Metamath Proof Explorer


Theorem 1arith2

Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in ApostolNT p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses 1arith.1 M=npppCntn
1arith.2 R=e0|e-1Fin
Assertion 1arith2 z∃!gRMz=g

Proof

Step Hyp Ref Expression
1 1arith.1 M=npppCntn
2 1arith.2 R=e0|e-1Fin
3 1 2 1arith M:1-1 ontoR
4 f1ocnv M:1-1 ontoRM-1:R1-1 onto
5 3 4 ax-mp M-1:R1-1 onto
6 f1ofveu M-1:R1-1 ontoz∃!gRM-1g=z
7 5 6 mpan z∃!gRM-1g=z
8 f1ocnvfvb M:1-1 ontoRzgRMz=gM-1g=z
9 3 8 mp3an1 zgRMz=gM-1g=z
10 9 reubidva z∃!gRMz=g∃!gRM-1g=z
11 7 10 mpbird z∃!gRMz=g
12 11 rgen z∃!gRMz=g