| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arith.1 |
|- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
| 2 |
|
1arith.2 |
|- R = { e e. ( NN0 ^m Prime ) | ( `' e " NN ) e. Fin } |
| 3 |
1 2
|
1arith |
|- M : NN -1-1-onto-> R |
| 4 |
|
f1ocnv |
|- ( M : NN -1-1-onto-> R -> `' M : R -1-1-onto-> NN ) |
| 5 |
3 4
|
ax-mp |
|- `' M : R -1-1-onto-> NN |
| 6 |
|
f1ofveu |
|- ( ( `' M : R -1-1-onto-> NN /\ z e. NN ) -> E! g e. R ( `' M ` g ) = z ) |
| 7 |
5 6
|
mpan |
|- ( z e. NN -> E! g e. R ( `' M ` g ) = z ) |
| 8 |
|
f1ocnvfvb |
|- ( ( M : NN -1-1-onto-> R /\ z e. NN /\ g e. R ) -> ( ( M ` z ) = g <-> ( `' M ` g ) = z ) ) |
| 9 |
3 8
|
mp3an1 |
|- ( ( z e. NN /\ g e. R ) -> ( ( M ` z ) = g <-> ( `' M ` g ) = z ) ) |
| 10 |
9
|
reubidva |
|- ( z e. NN -> ( E! g e. R ( M ` z ) = g <-> E! g e. R ( `' M ` g ) = z ) ) |
| 11 |
7 10
|
mpbird |
|- ( z e. NN -> E! g e. R ( M ` z ) = g ) |
| 12 |
11
|
rgen |
|- A. z e. NN E! g e. R ( M ` z ) = g |