Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
1cxp
Next ⟩
ecxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
1cxp
Description:
Value of the complex power function at one.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
1cxp
⊢
A
∈
ℂ
→
1
A
=
1
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
ax-1ne0
⊢
1
≠
0
3
cxpef
⊢
1
∈
ℂ
∧
1
≠
0
∧
A
∈
ℂ
→
1
A
=
e
A
⁢
log
⁡
1
4
1
2
3
mp3an12
⊢
A
∈
ℂ
→
1
A
=
e
A
⁢
log
⁡
1
5
log1
⊢
log
⁡
1
=
0
6
5
oveq2i
⊢
A
⁢
log
⁡
1
=
A
⋅
0
7
mul01
⊢
A
∈
ℂ
→
A
⋅
0
=
0
8
6
7
eqtrid
⊢
A
∈
ℂ
→
A
⁢
log
⁡
1
=
0
9
8
fveq2d
⊢
A
∈
ℂ
→
e
A
⁢
log
⁡
1
=
e
0
10
ef0
⊢
e
0
=
1
11
9
10
eqtrdi
⊢
A
∈
ℂ
→
e
A
⁢
log
⁡
1
=
1
12
4
11
eqtrd
⊢
A
∈
ℂ
→
1
A
=
1