| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 2 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 3 |
|
cxpef |
⊢ ( ( 1 ∈ ℂ ∧ 1 ≠ 0 ∧ 𝐴 ∈ ℂ ) → ( 1 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) ) |
| 4 |
1 2 3
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( 1 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) ) |
| 5 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 6 |
5
|
oveq2i |
⊢ ( 𝐴 · ( log ‘ 1 ) ) = ( 𝐴 · 0 ) |
| 7 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| 8 |
6 7
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( log ‘ 1 ) ) = 0 ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) = ( exp ‘ 0 ) ) |
| 10 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 11 |
9 10
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) = 1 ) |
| 12 |
4 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 1 ↑𝑐 𝐴 ) = 1 ) |