Metamath Proof Explorer


Theorem 1oequni2o

Description: The ordinal number 1o is the predecessor of the ordinal number 2o . (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion 1oequni2o 1𝑜=2𝑜

Proof

Step Hyp Ref Expression
1 df-2o 2𝑜=suc1𝑜
2 2on 2𝑜On
3 2on0 2𝑜
4 2onn 2𝑜ω
5 nnlim 2𝑜ω¬Lim2𝑜
6 4 5 ax-mp ¬Lim2𝑜
7 onsucuni3 2𝑜On2𝑜¬Lim2𝑜2𝑜=suc2𝑜
8 2 3 6 7 mp3an 2𝑜=suc2𝑜
9 1 8 eqtr3i suc1𝑜=suc2𝑜
10 1on 1𝑜On
11 onuni 2𝑜On2𝑜On
12 2 11 ax-mp 2𝑜On
13 suc11 1𝑜On2𝑜Onsuc1𝑜=suc2𝑜1𝑜=2𝑜
14 10 12 13 mp2an suc1𝑜=suc2𝑜1𝑜=2𝑜
15 9 14 mpbi 1𝑜=2𝑜