Metamath Proof Explorer


Theorem 1stval2

Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of Monk1 p. 52. (Contributed by NM, 18-Aug-2006)

Ref Expression
Assertion 1stval2 AV×V1stA=A

Proof

Step Hyp Ref Expression
1 elvv AV×VxyA=xy
2 vex xV
3 vex yV
4 2 3 op1st 1stxy=x
5 2 3 op1stb xy=x
6 4 5 eqtr4i 1stxy=xy
7 fveq2 A=xy1stA=1stxy
8 inteq A=xyA=xy
9 8 inteqd A=xyA=xy
10 6 7 9 3eqtr4a A=xy1stA=A
11 10 exlimivv xyA=xy1stA=A
12 1 11 sylbi AV×V1stA=A