Metamath Proof Explorer


Theorem 2clwwlk

Description: Value of operation C , mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in Huneke p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk . ( X C N ) is called the "set of double loops of length N on vertex X " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 20-Apr-2022)

Ref Expression
Hypothesis 2clwwlk.c C=vV,n2wvClWWalksNOnGn|wn2=v
Assertion 2clwwlk XVN2XCN=wXClWWalksNOnGN|wN2=X

Proof

Step Hyp Ref Expression
1 2clwwlk.c C=vV,n2wvClWWalksNOnGn|wn2=v
2 oveq12 v=Xn=NvClWWalksNOnGn=XClWWalksNOnGN
3 fvoveq1 n=Nwn2=wN2
4 3 adantl v=Xn=Nwn2=wN2
5 simpl v=Xn=Nv=X
6 4 5 eqeq12d v=Xn=Nwn2=vwN2=X
7 2 6 rabeqbidv v=Xn=NwvClWWalksNOnGn|wn2=v=wXClWWalksNOnGN|wN2=X
8 ovex XClWWalksNOnGNV
9 8 rabex wXClWWalksNOnGN|wN2=XV
10 7 1 9 ovmpoa XVN2XCN=wXClWWalksNOnGN|wN2=X