Metamath Proof Explorer


Theorem 2euex

Description: Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2euexv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion 2euex ∃!xyφy∃!xφ

Proof

Step Hyp Ref Expression
1 df-eu ∃!xyφxyφ*xyφ
2 excom xyφyxφ
3 nfe1 yyφ
4 3 nfmo y*xyφ
5 19.8a φyφ
6 5 moimi *xyφ*xφ
7 moeu *xφxφ∃!xφ
8 6 7 sylib *xyφxφ∃!xφ
9 4 8 eximd *xyφyxφy∃!xφ
10 2 9 biimtrid *xyφxyφy∃!xφ
11 10 impcom xyφ*xyφy∃!xφ
12 1 11 sylbi ∃!xyφy∃!xφ