Metamath Proof Explorer


Theorem 2euexv

Description: Double quantification with existential uniqueness. Version of 2euex with x and y distinct, but not requiring ax-13 . (Contributed by NM, 3-Dec-2001) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2euexv ∃!xyφy∃!xφ

Proof

Step Hyp Ref Expression
1 df-eu ∃!xyφxyφ*xyφ
2 excom xyφyxφ
3 nfe1 yyφ
4 3 nfmov y*xyφ
5 19.8a φyφ
6 5 moimi *xyφ*xφ
7 moeu *xφxφ∃!xφ
8 6 7 sylib *xyφxφ∃!xφ
9 4 8 eximd *xyφyxφy∃!xφ
10 2 9 biimtrid *xyφxyφy∃!xφ
11 10 impcom xyφ*xyφy∃!xφ
12 1 11 sylbi ∃!xyφy∃!xφ