Metamath Proof Explorer


Theorem 2exeu

Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2exeuv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion 2exeu ∃!xyφ∃!yxφ∃!x∃!yφ

Proof

Step Hyp Ref Expression
1 eumo ∃!xyφ*xyφ
2 euex ∃!yφyφ
3 2 moimi *xyφ*x∃!yφ
4 1 3 syl ∃!xyφ*x∃!yφ
5 2euex ∃!yxφx∃!yφ
6 4 5 anim12ci ∃!xyφ∃!yxφx∃!yφ*x∃!yφ
7 df-eu ∃!x∃!yφx∃!yφ*x∃!yφ
8 6 7 sylibr ∃!xyφ∃!yxφ∃!x∃!yφ