Metamath Proof Explorer


Theorem 2exeuv

Description: Double existential uniqueness implies double unique existential quantification. Version of 2exeu with x and y distinct, but not requiring ax-13 . (Contributed by NM, 3-Dec-2001) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2exeuv ∃!xyφ∃!yxφ∃!x∃!yφ

Proof

Step Hyp Ref Expression
1 eumo ∃!xyφ*xyφ
2 euex ∃!yφyφ
3 2 moimi *xyφ*x∃!yφ
4 1 3 syl ∃!xyφ*x∃!yφ
5 2euexv ∃!yxφx∃!yφ
6 4 5 anim12ci ∃!xyφ∃!yxφx∃!yφ*x∃!yφ
7 df-eu ∃!x∃!yφx∃!yφ*x∃!yφ
8 6 7 sylibr ∃!xyφ∃!yxφ∃!x∃!yφ