Metamath Proof Explorer


Theorem 2exsb

Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)

Ref Expression
Assertion 2exsb xyφzwxyx=zy=wφ

Proof

Step Hyp Ref Expression
1 nfv wφ
2 nfv zφ
3 1 2 2sb8ef xyφzwzxwyφ
4 2sb6 zxwyφxyx=zy=wφ
5 4 2exbii zwzxwyφzwxyx=zy=wφ
6 3 5 bitri xyφzwxyx=zy=wφ