Metamath Proof Explorer


Theorem 2fcoidinvd

Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses fcof1od.f φF:AB
fcof1od.g φG:BA
fcof1od.a φGF=IA
fcof1od.b φFG=IB
Assertion 2fcoidinvd φF-1=G

Proof

Step Hyp Ref Expression
1 fcof1od.f φF:AB
2 fcof1od.g φG:BA
3 fcof1od.a φGF=IA
4 fcof1od.b φFG=IB
5 1 2 3 4 fcof1od φF:A1-1 ontoB
6 5 2 4 fcof1oinvd φF-1=G