Metamath Proof Explorer


Theorem 2ffzeq

Description: Two functions over 0-based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018)

Ref Expression
Assertion 2ffzeq M0F:0MXP:0NYF=PM=Ni0MFi=Pi

Proof

Step Hyp Ref Expression
1 ffn F:0MXFFn0M
2 ffn P:0NYPFn0N
3 1 2 anim12i F:0MXP:0NYFFn0MPFn0N
4 3 3adant1 M0F:0MXP:0NYFFn0MPFn0N
5 eqfnfv2 FFn0MPFn0NF=P0M=0Ni0MFi=Pi
6 4 5 syl M0F:0MXP:0NYF=P0M=0Ni0MFi=Pi
7 elnn0uz M0M0
8 fzopth M00M=0N0=0M=N
9 7 8 sylbi M00M=0N0=0M=N
10 simpr 0=0M=NM=N
11 9 10 syl6bi M00M=0NM=N
12 11 anim1d M00M=0Ni0MFi=PiM=Ni0MFi=Pi
13 oveq2 M=N0M=0N
14 13 anim1i M=Ni0MFi=Pi0M=0Ni0MFi=Pi
15 12 14 impbid1 M00M=0Ni0MFi=PiM=Ni0MFi=Pi
16 15 3ad2ant1 M0F:0MXP:0NY0M=0Ni0MFi=PiM=Ni0MFi=Pi
17 6 16 bitrd M0F:0MXP:0NYF=PM=Ni0MFi=Pi