Metamath Proof Explorer


Theorem 2idlval

Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses 2idlval.i I=LIdealR
2idlval.o O=opprR
2idlval.j J=LIdealO
2idlval.t T=2IdealR
Assertion 2idlval T=IJ

Proof

Step Hyp Ref Expression
1 2idlval.i I=LIdealR
2 2idlval.o O=opprR
3 2idlval.j J=LIdealO
4 2idlval.t T=2IdealR
5 fveq2 r=RLIdealr=LIdealR
6 5 1 eqtr4di r=RLIdealr=I
7 fveq2 r=Ropprr=opprR
8 7 2 eqtr4di r=Ropprr=O
9 8 fveq2d r=RLIdealopprr=LIdealO
10 9 3 eqtr4di r=RLIdealopprr=J
11 6 10 ineq12d r=RLIdealrLIdealopprr=IJ
12 df-2idl 2Ideal=rVLIdealrLIdealopprr
13 1 fvexi IV
14 13 inex1 IJV
15 11 12 14 fvmpt RV2IdealR=IJ
16 fvprc ¬RV2IdealR=
17 inss1 IJI
18 fvprc ¬RVLIdealR=
19 1 18 eqtrid ¬RVI=
20 sseq0 IJII=IJ=
21 17 19 20 sylancr ¬RVIJ=
22 16 21 eqtr4d ¬RV2IdealR=IJ
23 15 22 pm2.61i 2IdealR=IJ
24 4 23 eqtri T=IJ