Metamath Proof Explorer


Theorem 2lgsoddprmlem3a

Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3a 1218=0

Proof

Step Hyp Ref Expression
1 sq1 12=1
2 1 oveq1i 121=11
3 1m1e0 11=0
4 2 3 eqtri 121=0
5 4 oveq1i 1218=08
6 8cn 8
7 0re 0
8 8pos 0<8
9 7 8 gtneii 80
10 6 9 div0i 08=0
11 5 10 eqtri 1218=0