Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsdir2lem3 | |
|
2 | eleq1 | |
|
3 | 2 | eqcoms | |
4 | elun | |
|
5 | elpri | |
|
6 | oveq1 | |
|
7 | 6 | oveq1d | |
8 | 7 | oveq1d | |
9 | 2lgsoddprmlem3b | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | breq2d | |
12 | n2dvds1 | |
|
13 | 12 | pm2.21i | |
14 | 11 13 | syl6bi | |
15 | oveq1 | |
|
16 | 15 | oveq1d | |
17 | 16 | oveq1d | |
18 | 17 | breq2d | |
19 | 2lgsoddprmlem3c | |
|
20 | 19 | breq2i | |
21 | 18 20 | bitrdi | |
22 | n2dvds3 | |
|
23 | 22 | pm2.21i | |
24 | 21 23 | syl6bi | |
25 | 14 24 | jaoi | |
26 | 5 25 | syl | |
27 | 26 | jao1i | |
28 | 4 27 | sylbi | |
29 | elpri | |
|
30 | z0even | |
|
31 | oveq1 | |
|
32 | 31 | oveq1d | |
33 | 32 | oveq1d | |
34 | 2lgsoddprmlem3a | |
|
35 | 33 34 | eqtrdi | |
36 | 30 35 | breqtrrid | |
37 | 2z | |
|
38 | 3z | |
|
39 | dvdsmul1 | |
|
40 | 37 38 39 | mp2an | |
41 | oveq1 | |
|
42 | 41 | oveq1d | |
43 | 42 | oveq1d | |
44 | 2lgsoddprmlem3d | |
|
45 | 43 44 | eqtrdi | |
46 | 40 45 | breqtrrid | |
47 | 36 46 | jaoi | |
48 | 29 47 | syl | |
49 | 28 48 | impbid1 | |
50 | 3 49 | syl6bi | |
51 | 1 50 | syl5com | |
52 | 51 | 3impia | |