Metamath Proof Explorer


Theorem 2lgsoddprmlem3

Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3 N¬2NR=Nmod82R218R17

Proof

Step Hyp Ref Expression
1 lgsdir2lem3 N¬2NNmod81735
2 eleq1 Nmod8=RNmod81735R1735
3 2 eqcoms R=Nmod8Nmod81735R1735
4 elun R1735R17R35
5 elpri R35R=3R=5
6 oveq1 R=3R2=32
7 6 oveq1d R=3R21=321
8 7 oveq1d R=3R218=3218
9 2lgsoddprmlem3b 3218=1
10 8 9 eqtrdi R=3R218=1
11 10 breq2d R=32R21821
12 n2dvds1 ¬21
13 12 pm2.21i 21R17
14 11 13 syl6bi R=32R218R17
15 oveq1 R=5R2=52
16 15 oveq1d R=5R21=521
17 16 oveq1d R=5R218=5218
18 17 breq2d R=52R21825218
19 2lgsoddprmlem3c 5218=3
20 19 breq2i 2521823
21 18 20 bitrdi R=52R21823
22 n2dvds3 ¬23
23 22 pm2.21i 23R17
24 21 23 syl6bi R=52R218R17
25 14 24 jaoi R=3R=52R218R17
26 5 25 syl R352R218R17
27 26 jao1i R17R352R218R17
28 4 27 sylbi R17352R218R17
29 elpri R17R=1R=7
30 z0even 20
31 oveq1 R=1R2=12
32 31 oveq1d R=1R21=121
33 32 oveq1d R=1R218=1218
34 2lgsoddprmlem3a 1218=0
35 33 34 eqtrdi R=1R218=0
36 30 35 breqtrrid R=12R218
37 2z 2
38 3z 3
39 dvdsmul1 23223
40 37 38 39 mp2an 223
41 oveq1 R=7R2=72
42 41 oveq1d R=7R21=721
43 42 oveq1d R=7R218=7218
44 2lgsoddprmlem3d 7218=23
45 43 44 eqtrdi R=7R218=23
46 40 45 breqtrrid R=72R218
47 36 46 jaoi R=1R=72R218
48 29 47 syl R172R218
49 28 48 impbid1 R17352R218R17
50 3 49 syl6bi R=Nmod8Nmod817352R218R17
51 1 50 syl5com N¬2NR=Nmod82R218R17
52 51 3impia N¬2NR=Nmod82R218R17