| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdir2lem3 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 2 |  | eleq1 | ⊢ ( ( 𝑁  mod  8 )  =  𝑅  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) | 
						
							| 3 | 2 | eqcoms | ⊢ ( 𝑅  =  ( 𝑁  mod  8 )  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) | 
						
							| 4 |  | elun | ⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  ( 𝑅  ∈  { 1 ,  7 }  ∨  𝑅  ∈  { 3 ,  5 } ) ) | 
						
							| 5 |  | elpri | ⊢ ( 𝑅  ∈  { 3 ,  5 }  →  ( 𝑅  =  3  ∨  𝑅  =  5 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑅  =  3  →  ( 𝑅 ↑ 2 )  =  ( 3 ↑ 2 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑅  =  3  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 3 ↑ 2 )  −  1 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑅  =  3  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 3 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 9 |  | 2lgsoddprmlem3b | ⊢ ( ( ( 3 ↑ 2 )  −  1 )  /  8 )  =  1 | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝑅  =  3  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  1 ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑅  =  3  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  1 ) ) | 
						
							| 12 |  | n2dvds1 | ⊢ ¬  2  ∥  1 | 
						
							| 13 | 12 | pm2.21i | ⊢ ( 2  ∥  1  →  𝑅  ∈  { 1 ,  7 } ) | 
						
							| 14 | 11 13 | biimtrdi | ⊢ ( 𝑅  =  3  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑅  =  5  →  ( 𝑅 ↑ 2 )  =  ( 5 ↑ 2 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑅  =  5  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 5 ↑ 2 )  −  1 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑅  =  5  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 5 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  ( ( ( 5 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 19 |  | 2lgsoddprmlem3c | ⊢ ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  =  3 | 
						
							| 20 | 19 | breq2i | ⊢ ( 2  ∥  ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  3 ) | 
						
							| 21 | 18 20 | bitrdi | ⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  3 ) ) | 
						
							| 22 |  | n2dvds3 | ⊢ ¬  2  ∥  3 | 
						
							| 23 | 22 | pm2.21i | ⊢ ( 2  ∥  3  →  𝑅  ∈  { 1 ,  7 } ) | 
						
							| 24 | 21 23 | biimtrdi | ⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 25 | 14 24 | jaoi | ⊢ ( ( 𝑅  =  3  ∨  𝑅  =  5 )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 26 | 5 25 | syl | ⊢ ( 𝑅  ∈  { 3 ,  5 }  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 27 | 26 | jao1i | ⊢ ( ( 𝑅  ∈  { 1 ,  7 }  ∨  𝑅  ∈  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 28 | 4 27 | sylbi | ⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 29 |  | elpri | ⊢ ( 𝑅  ∈  { 1 ,  7 }  →  ( 𝑅  =  1  ∨  𝑅  =  7 ) ) | 
						
							| 30 |  | z0even | ⊢ 2  ∥  0 | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑅  =  1  →  ( 𝑅 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑅  =  1  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 1 ↑ 2 )  −  1 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑅  =  1  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 1 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 34 |  | 2lgsoddprmlem3a | ⊢ ( ( ( 1 ↑ 2 )  −  1 )  /  8 )  =  0 | 
						
							| 35 | 33 34 | eqtrdi | ⊢ ( 𝑅  =  1  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  0 ) | 
						
							| 36 | 30 35 | breqtrrid | ⊢ ( 𝑅  =  1  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 37 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 38 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 39 |  | dvdsmul1 | ⊢ ( ( 2  ∈  ℤ  ∧  3  ∈  ℤ )  →  2  ∥  ( 2  ·  3 ) ) | 
						
							| 40 | 37 38 39 | mp2an | ⊢ 2  ∥  ( 2  ·  3 ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑅  =  7  →  ( 𝑅 ↑ 2 )  =  ( 7 ↑ 2 ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝑅  =  7  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 7 ↑ 2 )  −  1 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝑅  =  7  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 7 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 44 |  | 2lgsoddprmlem3d | ⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 ) | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( 𝑅  =  7  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 ) ) | 
						
							| 46 | 40 45 | breqtrrid | ⊢ ( 𝑅  =  7  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 47 | 36 46 | jaoi | ⊢ ( ( 𝑅  =  1  ∨  𝑅  =  7 )  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 48 | 29 47 | syl | ⊢ ( 𝑅  ∈  { 1 ,  7 }  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 49 | 28 48 | impbid1 | ⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) | 
						
							| 50 | 3 49 | biimtrdi | ⊢ ( 𝑅  =  ( 𝑁  mod  8 )  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) ) | 
						
							| 51 | 1 50 | syl5com | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑅  =  ( 𝑁  mod  8 )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) ) | 
						
							| 52 | 51 | 3impia | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁  ∧  𝑅  =  ( 𝑁  mod  8 ) )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) |