| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdir2lem3 |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) | 
						
							| 2 |  | eleq1 |  |-  ( ( N mod 8 ) = R -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) | 
						
							| 3 | 2 | eqcoms |  |-  ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) | 
						
							| 4 |  | elun |  |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) <-> ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) ) | 
						
							| 5 |  | elpri |  |-  ( R e. { 3 , 5 } -> ( R = 3 \/ R = 5 ) ) | 
						
							| 6 |  | oveq1 |  |-  ( R = 3 -> ( R ^ 2 ) = ( 3 ^ 2 ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( R = 3 -> ( ( R ^ 2 ) - 1 ) = ( ( 3 ^ 2 ) - 1 ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 3 ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 9 |  | 2lgsoddprmlem3b |  |-  ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 1 ) | 
						
							| 11 | 10 | breq2d |  |-  ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 1 ) ) | 
						
							| 12 |  | n2dvds1 |  |-  -. 2 || 1 | 
						
							| 13 | 12 | pm2.21i |  |-  ( 2 || 1 -> R e. { 1 , 7 } ) | 
						
							| 14 | 11 13 | biimtrdi |  |-  ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 15 |  | oveq1 |  |-  ( R = 5 -> ( R ^ 2 ) = ( 5 ^ 2 ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( R = 5 -> ( ( R ^ 2 ) - 1 ) = ( ( 5 ^ 2 ) - 1 ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( R = 5 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 18 | 17 | breq2d |  |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 19 |  | 2lgsoddprmlem3c |  |-  ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3 | 
						
							| 20 | 19 | breq2i |  |-  ( 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) | 
						
							| 21 | 18 20 | bitrdi |  |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) ) | 
						
							| 22 |  | n2dvds3 |  |-  -. 2 || 3 | 
						
							| 23 | 22 | pm2.21i |  |-  ( 2 || 3 -> R e. { 1 , 7 } ) | 
						
							| 24 | 21 23 | biimtrdi |  |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 25 | 14 24 | jaoi |  |-  ( ( R = 3 \/ R = 5 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 26 | 5 25 | syl |  |-  ( R e. { 3 , 5 } -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 27 | 26 | jao1i |  |-  ( ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 28 | 4 27 | sylbi |  |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
							| 29 |  | elpri |  |-  ( R e. { 1 , 7 } -> ( R = 1 \/ R = 7 ) ) | 
						
							| 30 |  | z0even |  |-  2 || 0 | 
						
							| 31 |  | oveq1 |  |-  ( R = 1 -> ( R ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( R = 1 -> ( ( R ^ 2 ) - 1 ) = ( ( 1 ^ 2 ) - 1 ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 1 ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 34 |  | 2lgsoddprmlem3a |  |-  ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0 | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 0 ) | 
						
							| 36 | 30 35 | breqtrrid |  |-  ( R = 1 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 37 |  | 2z |  |-  2 e. ZZ | 
						
							| 38 |  | 3z |  |-  3 e. ZZ | 
						
							| 39 |  | dvdsmul1 |  |-  ( ( 2 e. ZZ /\ 3 e. ZZ ) -> 2 || ( 2 x. 3 ) ) | 
						
							| 40 | 37 38 39 | mp2an |  |-  2 || ( 2 x. 3 ) | 
						
							| 41 |  | oveq1 |  |-  ( R = 7 -> ( R ^ 2 ) = ( 7 ^ 2 ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( R = 7 -> ( ( R ^ 2 ) - 1 ) = ( ( 7 ^ 2 ) - 1 ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 7 ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 44 |  | 2lgsoddprmlem3d |  |-  ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) | 
						
							| 45 | 43 44 | eqtrdi |  |-  ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) ) | 
						
							| 46 | 40 45 | breqtrrid |  |-  ( R = 7 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 47 | 36 46 | jaoi |  |-  ( ( R = 1 \/ R = 7 ) -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 48 | 29 47 | syl |  |-  ( R e. { 1 , 7 } -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 49 | 28 48 | impbid1 |  |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) | 
						
							| 50 | 3 49 | biimtrdi |  |-  ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) | 
						
							| 51 | 1 50 | syl5com |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( R = ( N mod 8 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) | 
						
							| 52 | 51 | 3impia |  |-  ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |