| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 2 |
1
|
oveq1i |
|- ( 5 ^ 2 ) = ( ( 4 + 1 ) ^ 2 ) |
| 3 |
|
4cn |
|- 4 e. CC |
| 4 |
|
binom21 |
|- ( 4 e. CC -> ( ( 4 + 1 ) ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) ) |
| 5 |
3 4
|
ax-mp |
|- ( ( 4 + 1 ) ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) |
| 6 |
2 5
|
eqtri |
|- ( 5 ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) |
| 7 |
6
|
oveq1i |
|- ( ( 5 ^ 2 ) - 1 ) = ( ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) - 1 ) |
| 8 |
|
3cn |
|- 3 e. CC |
| 9 |
|
8cn |
|- 8 e. CC |
| 10 |
8 9
|
mulcli |
|- ( 3 x. 8 ) e. CC |
| 11 |
|
ax-1cn |
|- 1 e. CC |
| 12 |
|
sq4e2t8 |
|- ( 4 ^ 2 ) = ( 2 x. 8 ) |
| 13 |
|
2cn |
|- 2 e. CC |
| 14 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 15 |
9
|
mullidi |
|- ( 1 x. 8 ) = 8 |
| 16 |
14 15
|
eqtr4i |
|- ( 4 x. 2 ) = ( 1 x. 8 ) |
| 17 |
3 13 16
|
mulcomli |
|- ( 2 x. 4 ) = ( 1 x. 8 ) |
| 18 |
12 17
|
oveq12i |
|- ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) = ( ( 2 x. 8 ) + ( 1 x. 8 ) ) |
| 19 |
13 11 9
|
adddiri |
|- ( ( 2 + 1 ) x. 8 ) = ( ( 2 x. 8 ) + ( 1 x. 8 ) ) |
| 20 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 21 |
20
|
oveq1i |
|- ( ( 2 + 1 ) x. 8 ) = ( 3 x. 8 ) |
| 22 |
18 19 21
|
3eqtr2i |
|- ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) = ( 3 x. 8 ) |
| 23 |
22
|
oveq1i |
|- ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) = ( ( 3 x. 8 ) + 1 ) |
| 24 |
10 11 23
|
mvrraddi |
|- ( ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) - 1 ) = ( 3 x. 8 ) |
| 25 |
7 24
|
eqtri |
|- ( ( 5 ^ 2 ) - 1 ) = ( 3 x. 8 ) |
| 26 |
25
|
oveq1i |
|- ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = ( ( 3 x. 8 ) / 8 ) |
| 27 |
|
0re |
|- 0 e. RR |
| 28 |
|
8pos |
|- 0 < 8 |
| 29 |
27 28
|
gtneii |
|- 8 =/= 0 |
| 30 |
8 9 29
|
divcan4i |
|- ( ( 3 x. 8 ) / 8 ) = 3 |
| 31 |
26 30
|
eqtri |
|- ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3 |