Metamath Proof Explorer


Theorem 2lgsoddprmlem3c

Description: Lemma 3 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3c 5218=3

Proof

Step Hyp Ref Expression
1 df-5 5=4+1
2 1 oveq1i 52=4+12
3 4cn 4
4 binom21 44+12=42+24+1
5 3 4 ax-mp 4+12=42+24+1
6 2 5 eqtri 52=42+24+1
7 6 oveq1i 521=42+24+1-1
8 3cn 3
9 8cn 8
10 8 9 mulcli 38
11 ax-1cn 1
12 sq4e2t8 42=28
13 2cn 2
14 4t2e8 42=8
15 9 mullidi 18=8
16 14 15 eqtr4i 42=18
17 3 13 16 mulcomli 24=18
18 12 17 oveq12i 42+24=28+18
19 13 11 9 adddiri 2+18=28+18
20 2p1e3 2+1=3
21 20 oveq1i 2+18=38
22 18 19 21 3eqtr2i 42+24=38
23 22 oveq1i 42+24+1=38+1
24 10 11 23 mvrraddi 42+24+1-1=38
25 7 24 eqtri 521=38
26 25 oveq1i 5218=388
27 0re 0
28 8pos 0<8
29 27 28 gtneii 80
30 8 9 29 divcan4i 388=3
31 26 30 eqtri 5218=3