Metamath Proof Explorer


Theorem 2lgsoddprmlem3d

Description: Lemma 4 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3d 7218=23

Proof

Step Hyp Ref Expression
1 6cn 6
2 8cn 8
3 0re 0
4 8pos 0<8
5 3 4 gtneii 80
6 1 2 5 divcan4i 688=6
7 1 2 mulcli 68
8 ax-1cn 1
9 4p3e7 4+3=7
10 9 eqcomi 7=4+3
11 10 oveq1i 72=4+32
12 4cn 4
13 3cn 3
14 12 13 binom2i 4+32=42+243+32
15 sq4e2t8 42=28
16 2cn 2
17 4t2e8 42=8
18 12 16 17 mulcomli 24=8
19 18 oveq1i 243=83
20 16 12 13 mulassi 243=243
21 2 13 mulcomi 83=38
22 19 20 21 3eqtr3i 243=38
23 15 22 oveq12i 42+243=28+38
24 16 13 2 adddiri 2+38=28+38
25 3p2e5 3+2=5
26 13 16 25 addcomli 2+3=5
27 26 oveq1i 2+38=58
28 23 24 27 3eqtr2i 42+243=58
29 sq3 32=9
30 df-9 9=8+1
31 29 30 eqtri 32=8+1
32 28 31 oveq12i 42+243+32=58+8+1
33 5cn 5
34 33 2 mulcli 58
35 34 2 8 addassi 58+8+1=58+8+1
36 df-6 6=5+1
37 36 oveq1i 68=5+18
38 33 a1i 85
39 id 88
40 38 39 adddirp1d 85+18=58+8
41 2 40 ax-mp 5+18=58+8
42 37 41 eqtri 68=58+8
43 42 eqcomi 58+8=68
44 43 oveq1i 58+8+1=68+1
45 32 35 44 3eqtr2i 42+243+32=68+1
46 14 45 eqtri 4+32=68+1
47 11 46 eqtri 72=68+1
48 7 8 47 mvrraddi 721=68
49 48 oveq1i 7218=688
50 3t2e6 32=6
51 13 16 50 mulcomli 23=6
52 6 49 51 3eqtr4i 7218=23