Description: Lemma 4 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn | |
|
2 | 8cn | |
|
3 | 0re | |
|
4 | 8pos | |
|
5 | 3 4 | gtneii | |
6 | 1 2 5 | divcan4i | |
7 | 1 2 | mulcli | |
8 | ax-1cn | |
|
9 | 4p3e7 | |
|
10 | 9 | eqcomi | |
11 | 10 | oveq1i | |
12 | 4cn | |
|
13 | 3cn | |
|
14 | 12 13 | binom2i | |
15 | sq4e2t8 | |
|
16 | 2cn | |
|
17 | 4t2e8 | |
|
18 | 12 16 17 | mulcomli | |
19 | 18 | oveq1i | |
20 | 16 12 13 | mulassi | |
21 | 2 13 | mulcomi | |
22 | 19 20 21 | 3eqtr3i | |
23 | 15 22 | oveq12i | |
24 | 16 13 2 | adddiri | |
25 | 3p2e5 | |
|
26 | 13 16 25 | addcomli | |
27 | 26 | oveq1i | |
28 | 23 24 27 | 3eqtr2i | |
29 | sq3 | |
|
30 | df-9 | |
|
31 | 29 30 | eqtri | |
32 | 28 31 | oveq12i | |
33 | 5cn | |
|
34 | 33 2 | mulcli | |
35 | 34 2 8 | addassi | |
36 | df-6 | |
|
37 | 36 | oveq1i | |
38 | 33 | a1i | |
39 | id | |
|
40 | 38 39 | adddirp1d | |
41 | 2 40 | ax-mp | |
42 | 37 41 | eqtri | |
43 | 42 | eqcomi | |
44 | 43 | oveq1i | |
45 | 32 35 44 | 3eqtr2i | |
46 | 14 45 | eqtri | |
47 | 11 46 | eqtri | |
48 | 7 8 47 | mvrraddi | |
49 | 48 | oveq1i | |
50 | 3t2e6 | |
|
51 | 13 16 50 | mulcomli | |
52 | 6 49 51 | 3eqtr4i | |