| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 2 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 3 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 4 |  | 8pos | ⊢ 0  <  8 | 
						
							| 5 | 3 4 | gtneii | ⊢ 8  ≠  0 | 
						
							| 6 | 1 2 5 | divcan4i | ⊢ ( ( 6  ·  8 )  /  8 )  =  6 | 
						
							| 7 | 1 2 | mulcli | ⊢ ( 6  ·  8 )  ∈  ℂ | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 |  | 4p3e7 | ⊢ ( 4  +  3 )  =  7 | 
						
							| 10 | 9 | eqcomi | ⊢ 7  =  ( 4  +  3 ) | 
						
							| 11 | 10 | oveq1i | ⊢ ( 7 ↑ 2 )  =  ( ( 4  +  3 ) ↑ 2 ) | 
						
							| 12 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 13 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 14 | 12 13 | binom2i | ⊢ ( ( 4  +  3 ) ↑ 2 )  =  ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) ) | 
						
							| 15 |  | sq4e2t8 | ⊢ ( 4 ↑ 2 )  =  ( 2  ·  8 ) | 
						
							| 16 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 17 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 18 | 12 16 17 | mulcomli | ⊢ ( 2  ·  4 )  =  8 | 
						
							| 19 | 18 | oveq1i | ⊢ ( ( 2  ·  4 )  ·  3 )  =  ( 8  ·  3 ) | 
						
							| 20 | 16 12 13 | mulassi | ⊢ ( ( 2  ·  4 )  ·  3 )  =  ( 2  ·  ( 4  ·  3 ) ) | 
						
							| 21 | 2 13 | mulcomi | ⊢ ( 8  ·  3 )  =  ( 3  ·  8 ) | 
						
							| 22 | 19 20 21 | 3eqtr3i | ⊢ ( 2  ·  ( 4  ·  3 ) )  =  ( 3  ·  8 ) | 
						
							| 23 | 15 22 | oveq12i | ⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  =  ( ( 2  ·  8 )  +  ( 3  ·  8 ) ) | 
						
							| 24 | 16 13 2 | adddiri | ⊢ ( ( 2  +  3 )  ·  8 )  =  ( ( 2  ·  8 )  +  ( 3  ·  8 ) ) | 
						
							| 25 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 26 | 13 16 25 | addcomli | ⊢ ( 2  +  3 )  =  5 | 
						
							| 27 | 26 | oveq1i | ⊢ ( ( 2  +  3 )  ·  8 )  =  ( 5  ·  8 ) | 
						
							| 28 | 23 24 27 | 3eqtr2i | ⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  =  ( 5  ·  8 ) | 
						
							| 29 |  | sq3 | ⊢ ( 3 ↑ 2 )  =  9 | 
						
							| 30 |  | df-9 | ⊢ 9  =  ( 8  +  1 ) | 
						
							| 31 | 29 30 | eqtri | ⊢ ( 3 ↑ 2 )  =  ( 8  +  1 ) | 
						
							| 32 | 28 31 | oveq12i | ⊢ ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) )  =  ( ( 5  ·  8 )  +  ( 8  +  1 ) ) | 
						
							| 33 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 34 | 33 2 | mulcli | ⊢ ( 5  ·  8 )  ∈  ℂ | 
						
							| 35 | 34 2 8 | addassi | ⊢ ( ( ( 5  ·  8 )  +  8 )  +  1 )  =  ( ( 5  ·  8 )  +  ( 8  +  1 ) ) | 
						
							| 36 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 37 | 36 | oveq1i | ⊢ ( 6  ·  8 )  =  ( ( 5  +  1 )  ·  8 ) | 
						
							| 38 | 33 | a1i | ⊢ ( 8  ∈  ℂ  →  5  ∈  ℂ ) | 
						
							| 39 |  | id | ⊢ ( 8  ∈  ℂ  →  8  ∈  ℂ ) | 
						
							| 40 | 38 39 | adddirp1d | ⊢ ( 8  ∈  ℂ  →  ( ( 5  +  1 )  ·  8 )  =  ( ( 5  ·  8 )  +  8 ) ) | 
						
							| 41 | 2 40 | ax-mp | ⊢ ( ( 5  +  1 )  ·  8 )  =  ( ( 5  ·  8 )  +  8 ) | 
						
							| 42 | 37 41 | eqtri | ⊢ ( 6  ·  8 )  =  ( ( 5  ·  8 )  +  8 ) | 
						
							| 43 | 42 | eqcomi | ⊢ ( ( 5  ·  8 )  +  8 )  =  ( 6  ·  8 ) | 
						
							| 44 | 43 | oveq1i | ⊢ ( ( ( 5  ·  8 )  +  8 )  +  1 )  =  ( ( 6  ·  8 )  +  1 ) | 
						
							| 45 | 32 35 44 | 3eqtr2i | ⊢ ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) )  =  ( ( 6  ·  8 )  +  1 ) | 
						
							| 46 | 14 45 | eqtri | ⊢ ( ( 4  +  3 ) ↑ 2 )  =  ( ( 6  ·  8 )  +  1 ) | 
						
							| 47 | 11 46 | eqtri | ⊢ ( 7 ↑ 2 )  =  ( ( 6  ·  8 )  +  1 ) | 
						
							| 48 | 7 8 47 | mvrraddi | ⊢ ( ( 7 ↑ 2 )  −  1 )  =  ( 6  ·  8 ) | 
						
							| 49 | 48 | oveq1i | ⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( ( 6  ·  8 )  /  8 ) | 
						
							| 50 |  | 3t2e6 | ⊢ ( 3  ·  2 )  =  6 | 
						
							| 51 | 13 16 50 | mulcomli | ⊢ ( 2  ·  3 )  =  6 | 
						
							| 52 | 6 49 51 | 3eqtr4i | ⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 ) |