| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6cn |  |-  6 e. CC | 
						
							| 2 |  | 8cn |  |-  8 e. CC | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 |  | 8pos |  |-  0 < 8 | 
						
							| 5 | 3 4 | gtneii |  |-  8 =/= 0 | 
						
							| 6 | 1 2 5 | divcan4i |  |-  ( ( 6 x. 8 ) / 8 ) = 6 | 
						
							| 7 | 1 2 | mulcli |  |-  ( 6 x. 8 ) e. CC | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 |  | 4p3e7 |  |-  ( 4 + 3 ) = 7 | 
						
							| 10 | 9 | eqcomi |  |-  7 = ( 4 + 3 ) | 
						
							| 11 | 10 | oveq1i |  |-  ( 7 ^ 2 ) = ( ( 4 + 3 ) ^ 2 ) | 
						
							| 12 |  | 4cn |  |-  4 e. CC | 
						
							| 13 |  | 3cn |  |-  3 e. CC | 
						
							| 14 | 12 13 | binom2i |  |-  ( ( 4 + 3 ) ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. ( 4 x. 3 ) ) ) + ( 3 ^ 2 ) ) | 
						
							| 15 |  | sq4e2t8 |  |-  ( 4 ^ 2 ) = ( 2 x. 8 ) | 
						
							| 16 |  | 2cn |  |-  2 e. CC | 
						
							| 17 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 18 | 12 16 17 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 19 | 18 | oveq1i |  |-  ( ( 2 x. 4 ) x. 3 ) = ( 8 x. 3 ) | 
						
							| 20 | 16 12 13 | mulassi |  |-  ( ( 2 x. 4 ) x. 3 ) = ( 2 x. ( 4 x. 3 ) ) | 
						
							| 21 | 2 13 | mulcomi |  |-  ( 8 x. 3 ) = ( 3 x. 8 ) | 
						
							| 22 | 19 20 21 | 3eqtr3i |  |-  ( 2 x. ( 4 x. 3 ) ) = ( 3 x. 8 ) | 
						
							| 23 | 15 22 | oveq12i |  |-  ( ( 4 ^ 2 ) + ( 2 x. ( 4 x. 3 ) ) ) = ( ( 2 x. 8 ) + ( 3 x. 8 ) ) | 
						
							| 24 | 16 13 2 | adddiri |  |-  ( ( 2 + 3 ) x. 8 ) = ( ( 2 x. 8 ) + ( 3 x. 8 ) ) | 
						
							| 25 |  | 3p2e5 |  |-  ( 3 + 2 ) = 5 | 
						
							| 26 | 13 16 25 | addcomli |  |-  ( 2 + 3 ) = 5 | 
						
							| 27 | 26 | oveq1i |  |-  ( ( 2 + 3 ) x. 8 ) = ( 5 x. 8 ) | 
						
							| 28 | 23 24 27 | 3eqtr2i |  |-  ( ( 4 ^ 2 ) + ( 2 x. ( 4 x. 3 ) ) ) = ( 5 x. 8 ) | 
						
							| 29 |  | sq3 |  |-  ( 3 ^ 2 ) = 9 | 
						
							| 30 |  | df-9 |  |-  9 = ( 8 + 1 ) | 
						
							| 31 | 29 30 | eqtri |  |-  ( 3 ^ 2 ) = ( 8 + 1 ) | 
						
							| 32 | 28 31 | oveq12i |  |-  ( ( ( 4 ^ 2 ) + ( 2 x. ( 4 x. 3 ) ) ) + ( 3 ^ 2 ) ) = ( ( 5 x. 8 ) + ( 8 + 1 ) ) | 
						
							| 33 |  | 5cn |  |-  5 e. CC | 
						
							| 34 | 33 2 | mulcli |  |-  ( 5 x. 8 ) e. CC | 
						
							| 35 | 34 2 8 | addassi |  |-  ( ( ( 5 x. 8 ) + 8 ) + 1 ) = ( ( 5 x. 8 ) + ( 8 + 1 ) ) | 
						
							| 36 |  | df-6 |  |-  6 = ( 5 + 1 ) | 
						
							| 37 | 36 | oveq1i |  |-  ( 6 x. 8 ) = ( ( 5 + 1 ) x. 8 ) | 
						
							| 38 | 33 | a1i |  |-  ( 8 e. CC -> 5 e. CC ) | 
						
							| 39 |  | id |  |-  ( 8 e. CC -> 8 e. CC ) | 
						
							| 40 | 38 39 | adddirp1d |  |-  ( 8 e. CC -> ( ( 5 + 1 ) x. 8 ) = ( ( 5 x. 8 ) + 8 ) ) | 
						
							| 41 | 2 40 | ax-mp |  |-  ( ( 5 + 1 ) x. 8 ) = ( ( 5 x. 8 ) + 8 ) | 
						
							| 42 | 37 41 | eqtri |  |-  ( 6 x. 8 ) = ( ( 5 x. 8 ) + 8 ) | 
						
							| 43 | 42 | eqcomi |  |-  ( ( 5 x. 8 ) + 8 ) = ( 6 x. 8 ) | 
						
							| 44 | 43 | oveq1i |  |-  ( ( ( 5 x. 8 ) + 8 ) + 1 ) = ( ( 6 x. 8 ) + 1 ) | 
						
							| 45 | 32 35 44 | 3eqtr2i |  |-  ( ( ( 4 ^ 2 ) + ( 2 x. ( 4 x. 3 ) ) ) + ( 3 ^ 2 ) ) = ( ( 6 x. 8 ) + 1 ) | 
						
							| 46 | 14 45 | eqtri |  |-  ( ( 4 + 3 ) ^ 2 ) = ( ( 6 x. 8 ) + 1 ) | 
						
							| 47 | 11 46 | eqtri |  |-  ( 7 ^ 2 ) = ( ( 6 x. 8 ) + 1 ) | 
						
							| 48 | 7 8 47 | mvrraddi |  |-  ( ( 7 ^ 2 ) - 1 ) = ( 6 x. 8 ) | 
						
							| 49 | 48 | oveq1i |  |-  ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( ( 6 x. 8 ) / 8 ) | 
						
							| 50 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 51 | 13 16 50 | mulcomli |  |-  ( 2 x. 3 ) = 6 | 
						
							| 52 | 6 49 51 | 3eqtr4i |  |-  ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) |