| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 5 ↑ 2 )  =  ( ( 4  +  1 ) ↑ 2 ) | 
						
							| 3 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 4 |  | binom21 | ⊢ ( 4  ∈  ℂ  →  ( ( 4  +  1 ) ↑ 2 )  =  ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ( 4  +  1 ) ↑ 2 )  =  ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 ) | 
						
							| 6 | 2 5 | eqtri | ⊢ ( 5 ↑ 2 )  =  ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 ) | 
						
							| 7 | 6 | oveq1i | ⊢ ( ( 5 ↑ 2 )  −  1 )  =  ( ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 )  −  1 ) | 
						
							| 8 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 9 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 10 | 8 9 | mulcli | ⊢ ( 3  ·  8 )  ∈  ℂ | 
						
							| 11 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 12 |  | sq4e2t8 | ⊢ ( 4 ↑ 2 )  =  ( 2  ·  8 ) | 
						
							| 13 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 14 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 15 | 9 | mullidi | ⊢ ( 1  ·  8 )  =  8 | 
						
							| 16 | 14 15 | eqtr4i | ⊢ ( 4  ·  2 )  =  ( 1  ·  8 ) | 
						
							| 17 | 3 13 16 | mulcomli | ⊢ ( 2  ·  4 )  =  ( 1  ·  8 ) | 
						
							| 18 | 12 17 | oveq12i | ⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  =  ( ( 2  ·  8 )  +  ( 1  ·  8 ) ) | 
						
							| 19 | 13 11 9 | adddiri | ⊢ ( ( 2  +  1 )  ·  8 )  =  ( ( 2  ·  8 )  +  ( 1  ·  8 ) ) | 
						
							| 20 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 21 | 20 | oveq1i | ⊢ ( ( 2  +  1 )  ·  8 )  =  ( 3  ·  8 ) | 
						
							| 22 | 18 19 21 | 3eqtr2i | ⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  =  ( 3  ·  8 ) | 
						
							| 23 | 22 | oveq1i | ⊢ ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 )  =  ( ( 3  ·  8 )  +  1 ) | 
						
							| 24 | 10 11 23 | mvrraddi | ⊢ ( ( ( ( 4 ↑ 2 )  +  ( 2  ·  4 ) )  +  1 )  −  1 )  =  ( 3  ·  8 ) | 
						
							| 25 | 7 24 | eqtri | ⊢ ( ( 5 ↑ 2 )  −  1 )  =  ( 3  ·  8 ) | 
						
							| 26 | 25 | oveq1i | ⊢ ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  =  ( ( 3  ·  8 )  /  8 ) | 
						
							| 27 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 28 |  | 8pos | ⊢ 0  <  8 | 
						
							| 29 | 27 28 | gtneii | ⊢ 8  ≠  0 | 
						
							| 30 | 8 9 29 | divcan4i | ⊢ ( ( 3  ·  8 )  /  8 )  =  3 | 
						
							| 31 | 26 30 | eqtri | ⊢ ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  =  3 |