Metamath Proof Explorer


Theorem 2lgsoddprmlem3c

Description: Lemma 3 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3c ( ( ( 5 ↑ 2 ) − 1 ) / 8 ) = 3

Proof

Step Hyp Ref Expression
1 df-5 5 = ( 4 + 1 )
2 1 oveq1i ( 5 ↑ 2 ) = ( ( 4 + 1 ) ↑ 2 )
3 4cn 4 ∈ ℂ
4 binom21 ( 4 ∈ ℂ → ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) )
5 3 4 ax-mp ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 )
6 2 5 eqtri ( 5 ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 )
7 6 oveq1i ( ( 5 ↑ 2 ) − 1 ) = ( ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) − 1 )
8 3cn 3 ∈ ℂ
9 8cn 8 ∈ ℂ
10 8 9 mulcli ( 3 · 8 ) ∈ ℂ
11 ax-1cn 1 ∈ ℂ
12 sq4e2t8 ( 4 ↑ 2 ) = ( 2 · 8 )
13 2cn 2 ∈ ℂ
14 4t2e8 ( 4 · 2 ) = 8
15 9 mulid2i ( 1 · 8 ) = 8
16 14 15 eqtr4i ( 4 · 2 ) = ( 1 · 8 )
17 3 13 16 mulcomli ( 2 · 4 ) = ( 1 · 8 )
18 12 17 oveq12i ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ( ( 2 · 8 ) + ( 1 · 8 ) )
19 13 11 9 adddiri ( ( 2 + 1 ) · 8 ) = ( ( 2 · 8 ) + ( 1 · 8 ) )
20 2p1e3 ( 2 + 1 ) = 3
21 20 oveq1i ( ( 2 + 1 ) · 8 ) = ( 3 · 8 )
22 18 19 21 3eqtr2i ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ( 3 · 8 )
23 22 oveq1i ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) = ( ( 3 · 8 ) + 1 )
24 10 11 23 mvrraddi ( ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) − 1 ) = ( 3 · 8 )
25 7 24 eqtri ( ( 5 ↑ 2 ) − 1 ) = ( 3 · 8 )
26 25 oveq1i ( ( ( 5 ↑ 2 ) − 1 ) / 8 ) = ( ( 3 · 8 ) / 8 )
27 0re 0 ∈ ℝ
28 8pos 0 < 8
29 27 28 gtneii 8 ≠ 0
30 8 9 29 divcan4i ( ( 3 · 8 ) / 8 ) = 3
31 26 30 eqtri ( ( ( 5 ↑ 2 ) − 1 ) / 8 ) = 3