| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) = ( N mod 8 ) ) | 
						
							| 2 |  | 2lgsoddprmlem2 |  |-  ( ( N e. ZZ /\ -. 2 || N /\ ( N mod 8 ) = ( N mod 8 ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 3 | 1 2 | mpd3an3 |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 4 |  | 2lgsoddprmlem3 |  |-  ( ( N e. ZZ /\ -. 2 || N /\ ( N mod 8 ) = ( N mod 8 ) ) -> ( 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 5 | 1 4 | mpd3an3 |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 6 | 3 5 | bitrd |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) |