| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 2 |  | 2lgs |  |-  ( P e. Prime -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 4 |  | simpl |  |-  ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = 1 ) | 
						
							| 5 |  | eqcom |  |-  ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) | 
						
							| 6 | 5 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) ) | 
						
							| 7 |  | nnoddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) | 
						
							| 8 |  | nnz |  |-  ( P e. NN -> P e. ZZ ) | 
						
							| 9 | 8 | anim1i |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( P e. ZZ /\ -. 2 || P ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. ZZ /\ -. 2 || P ) ) | 
						
							| 11 |  | sqoddm1div8z |  |-  ( ( P e. ZZ /\ -. 2 || P ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) | 
						
							| 12 | 10 11 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) | 
						
							| 13 |  | m1exp1 |  |-  ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 15 |  | 2lgsoddprmlem4 |  |-  ( ( P e. ZZ /\ -. 2 || P ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 16 | 10 15 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 17 | 6 14 16 | 3bitrd |  |-  ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 18 | 17 | biimparc |  |-  ( ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 20 | 4 19 | eqtrd |  |-  ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 21 | 20 | exp32 |  |-  ( ( 2 /L P ) = 1 -> ( ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) | 
						
							| 22 |  | 2z |  |-  2 e. ZZ | 
						
							| 23 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 24 | 1 23 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) | 
						
							| 25 |  | lgscl1 |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) | 
						
							| 26 | 22 24 25 | sylancr |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) | 
						
							| 27 |  | ovex |  |-  ( 2 /L P ) e. _V | 
						
							| 28 | 27 | eltp |  |-  ( ( 2 /L P ) e. { -u 1 , 0 , 1 } <-> ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) ) | 
						
							| 29 |  | simpl |  |-  ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = -u 1 ) | 
						
							| 30 | 16 | notbid |  |-  ( P e. ( Prime \ { 2 } ) -> ( -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> -. ( P mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 31 | 30 | biimpar |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 32 |  | m1expo |  |-  ( ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ /\ -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) | 
						
							| 33 | 12 31 32 | syl2an2r |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 36 | 29 35 | eqtrd |  |-  ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 37 | 36 | a1d |  |-  ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) | 
						
							| 38 | 37 | exp32 |  |-  ( ( 2 /L P ) = -u 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 39 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 40 |  | simpr |  |-  ( ( P e. Prime /\ P =/= 2 ) -> P =/= 2 ) | 
						
							| 41 | 40 | necomd |  |-  ( ( P e. Prime /\ P =/= 2 ) -> 2 =/= P ) | 
						
							| 42 | 39 41 | sylbi |  |-  ( P e. ( Prime \ { 2 } ) -> 2 =/= P ) | 
						
							| 43 |  | 2prm |  |-  2 e. Prime | 
						
							| 44 |  | prmrp |  |-  ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 45 | 43 1 44 | sylancr |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) | 
						
							| 46 | 42 45 | mpbird |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 gcd P ) = 1 ) | 
						
							| 47 |  | lgsne0 |  |-  ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) | 
						
							| 48 | 22 24 47 | sylancr |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) | 
						
							| 49 | 46 48 | mpbird |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) =/= 0 ) | 
						
							| 50 |  | eqneqall |  |-  ( ( 2 /L P ) = 0 -> ( ( 2 /L P ) =/= 0 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 51 | 49 50 | syl5 |  |-  ( ( 2 /L P ) = 0 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 52 |  | pm2.24 |  |-  ( ( 2 /L P ) = 1 -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) | 
						
							| 53 | 52 | 2a1d |  |-  ( ( 2 /L P ) = 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 54 | 38 51 53 | 3jaoi |  |-  ( ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 55 | 28 54 | sylbi |  |-  ( ( 2 /L P ) e. { -u 1 , 0 , 1 } -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) | 
						
							| 56 | 26 55 | mpcom |  |-  ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) | 
						
							| 57 | 56 | com13 |  |-  ( -. ( 2 /L P ) = 1 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) | 
						
							| 58 | 21 57 | bija |  |-  ( ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) | 
						
							| 59 | 3 58 | mpcom |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |