| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
divides |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
| 3 |
1 2
|
mpan |
|- ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
| 4 |
|
oveq2 |
|- ( N = ( n x. 2 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) |
| 5 |
4
|
eqcoms |
|- ( ( n x. 2 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) |
| 6 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 7 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
| 8 |
6 7
|
mulcomd |
|- ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) |
| 9 |
8
|
oveq2d |
|- ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = ( -u 1 ^ ( 2 x. n ) ) ) |
| 10 |
|
m1expeven |
|- ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) |
| 11 |
9 10
|
eqtrd |
|- ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = 1 ) |
| 12 |
5 11
|
sylan9eqr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = N ) -> ( -u 1 ^ N ) = 1 ) |
| 13 |
12
|
rexlimiva |
|- ( E. n e. ZZ ( n x. 2 ) = N -> ( -u 1 ^ N ) = 1 ) |
| 14 |
3 13
|
biimtrdi |
|- ( N e. ZZ -> ( 2 || N -> ( -u 1 ^ N ) = 1 ) ) |
| 15 |
14
|
impcom |
|- ( ( 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = 1 ) |
| 16 |
|
simpl |
|- ( ( 2 || N /\ N e. ZZ ) -> 2 || N ) |
| 17 |
15 16
|
2thd |
|- ( ( 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |
| 18 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 19 |
|
eqcom |
|- ( -u 1 = 1 <-> 1 = -u 1 ) |
| 20 |
|
ax-1cn |
|- 1 e. CC |
| 21 |
20
|
eqnegi |
|- ( 1 = -u 1 <-> 1 = 0 ) |
| 22 |
19 21
|
bitri |
|- ( -u 1 = 1 <-> 1 = 0 ) |
| 23 |
18 22
|
nemtbir |
|- -. -u 1 = 1 |
| 24 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 25 |
|
oveq2 |
|- ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
| 26 |
25
|
eqcoms |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
| 27 |
|
neg1cn |
|- -u 1 e. CC |
| 28 |
27
|
a1i |
|- ( n e. ZZ -> -u 1 e. CC ) |
| 29 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 30 |
29
|
a1i |
|- ( n e. ZZ -> -u 1 =/= 0 ) |
| 31 |
1
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
| 32 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
| 33 |
31 32
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 34 |
28 30 33
|
expp1zd |
|- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) |
| 35 |
10
|
oveq1d |
|- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
| 36 |
27
|
mullidi |
|- ( 1 x. -u 1 ) = -u 1 |
| 37 |
35 36
|
eqtrdi |
|- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) |
| 38 |
34 37
|
eqtrd |
|- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
| 39 |
26 38
|
sylan9eqr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) |
| 40 |
39
|
rexlimiva |
|- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) |
| 41 |
24 40
|
biimtrdi |
|- ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) |
| 42 |
41
|
impcom |
|- ( ( -. 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = -u 1 ) |
| 43 |
42
|
eqeq1d |
|- ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> -u 1 = 1 ) ) |
| 44 |
23 43
|
mtbiri |
|- ( ( -. 2 || N /\ N e. ZZ ) -> -. ( -u 1 ^ N ) = 1 ) |
| 45 |
|
simpl |
|- ( ( -. 2 || N /\ N e. ZZ ) -> -. 2 || N ) |
| 46 |
44 45
|
2falsed |
|- ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |
| 47 |
17 46
|
pm2.61ian |
|- ( N e. ZZ -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |