| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
divides |
|
| 3 |
1 2
|
mpan |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eqcoms |
|
| 6 |
|
zcn |
|
| 7 |
|
2cnd |
|
| 8 |
6 7
|
mulcomd |
|
| 9 |
8
|
oveq2d |
|
| 10 |
|
m1expeven |
|
| 11 |
9 10
|
eqtrd |
|
| 12 |
5 11
|
sylan9eqr |
|
| 13 |
12
|
rexlimiva |
|
| 14 |
3 13
|
biimtrdi |
|
| 15 |
14
|
impcom |
|
| 16 |
|
simpl |
|
| 17 |
15 16
|
2thd |
|
| 18 |
|
ax-1ne0 |
|
| 19 |
|
eqcom |
|
| 20 |
|
ax-1cn |
|
| 21 |
20
|
eqnegi |
|
| 22 |
19 21
|
bitri |
|
| 23 |
18 22
|
nemtbir |
|
| 24 |
|
odd2np1 |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eqcoms |
|
| 27 |
|
neg1cn |
|
| 28 |
27
|
a1i |
|
| 29 |
|
neg1ne0 |
|
| 30 |
29
|
a1i |
|
| 31 |
1
|
a1i |
|
| 32 |
|
id |
|
| 33 |
31 32
|
zmulcld |
|
| 34 |
28 30 33
|
expp1zd |
|
| 35 |
10
|
oveq1d |
|
| 36 |
27
|
mullidi |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
34 37
|
eqtrd |
|
| 39 |
26 38
|
sylan9eqr |
|
| 40 |
39
|
rexlimiva |
|
| 41 |
24 40
|
biimtrdi |
|
| 42 |
41
|
impcom |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
23 43
|
mtbiri |
|
| 45 |
|
simpl |
|
| 46 |
44 45
|
2falsed |
|
| 47 |
17 46
|
pm2.61ian |
|