Metamath Proof Explorer


Theorem m1exp1

Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021)

Ref Expression
Assertion m1exp1 N 1 N = 1 2 N

Proof

Step Hyp Ref Expression
1 2z 2
2 divides 2 N 2 N n n 2 = N
3 1 2 mpan N 2 N n n 2 = N
4 oveq2 N = n 2 1 N = 1 n 2
5 4 eqcoms n 2 = N 1 N = 1 n 2
6 zcn n n
7 2cnd n 2
8 6 7 mulcomd n n 2 = 2 n
9 8 oveq2d n 1 n 2 = 1 2 n
10 m1expeven n 1 2 n = 1
11 9 10 eqtrd n 1 n 2 = 1
12 5 11 sylan9eqr n n 2 = N 1 N = 1
13 12 rexlimiva n n 2 = N 1 N = 1
14 3 13 syl6bi N 2 N 1 N = 1
15 14 impcom 2 N N 1 N = 1
16 simpl 2 N N 2 N
17 15 16 2thd 2 N N 1 N = 1 2 N
18 ax-1ne0 1 0
19 eqcom 1 = 1 1 = 1
20 ax-1cn 1
21 20 eqnegi 1 = 1 1 = 0
22 19 21 bitri 1 = 1 1 = 0
23 18 22 nemtbir ¬ 1 = 1
24 odd2np1 N ¬ 2 N n 2 n + 1 = N
25 oveq2 N = 2 n + 1 1 N = 1 2 n + 1
26 25 eqcoms 2 n + 1 = N 1 N = 1 2 n + 1
27 neg1cn 1
28 27 a1i n 1
29 neg1ne0 1 0
30 29 a1i n 1 0
31 1 a1i n 2
32 id n n
33 31 32 zmulcld n 2 n
34 28 30 33 expp1zd n 1 2 n + 1 = 1 2 n -1
35 10 oveq1d n 1 2 n -1 = 1 -1
36 27 mulid2i 1 -1 = 1
37 35 36 eqtrdi n 1 2 n -1 = 1
38 34 37 eqtrd n 1 2 n + 1 = 1
39 26 38 sylan9eqr n 2 n + 1 = N 1 N = 1
40 39 rexlimiva n 2 n + 1 = N 1 N = 1
41 24 40 syl6bi N ¬ 2 N 1 N = 1
42 41 impcom ¬ 2 N N 1 N = 1
43 42 eqeq1d ¬ 2 N N 1 N = 1 1 = 1
44 23 43 mtbiri ¬ 2 N N ¬ 1 N = 1
45 simpl ¬ 2 N N ¬ 2 N
46 44 45 2falsed ¬ 2 N N 1 N = 1 2 N
47 17 46 pm2.61ian N 1 N = 1 2 N