| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | 2lgs | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 2  /L  𝑃 )  =  1  ∧  ( ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) )  →  ( 2  /L  𝑃 )  =  1 ) | 
						
							| 5 |  | eqcom | ⊢ ( 1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  ↔  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  1 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  ↔  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  1 ) ) | 
						
							| 7 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 8 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 11 |  | sqoddm1div8z | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  →  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ∈  ℤ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ∈  ℤ ) | 
						
							| 13 |  | m1exp1 | ⊢ ( ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ∈  ℤ  →  ( ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  1  ↔  2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  1  ↔  2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 15 |  | 2lgsoddprmlem4 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  →  ( 2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 16 | 10 15 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 17 | 6 14 16 | 3bitrd | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 18 | 17 | biimparc | ⊢ ( ( ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 2  /L  𝑃 )  =  1  ∧  ( ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) )  →  1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 20 | 4 19 | eqtrd | ⊢ ( ( ( 2  /L  𝑃 )  =  1  ∧  ( ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 21 | 20 | exp32 | ⊢ ( ( 2  /L  𝑃 )  =  1  →  ( ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) | 
						
							| 22 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 23 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℤ ) | 
						
							| 25 |  | lgscl1 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 2  /L  𝑃 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 26 | 22 24 25 | sylancr | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 27 |  | ovex | ⊢ ( 2  /L  𝑃 )  ∈  V | 
						
							| 28 | 27 | eltp | ⊢ ( ( 2  /L  𝑃 )  ∈  { - 1 ,  0 ,  1 }  ↔  ( ( 2  /L  𝑃 )  =  - 1  ∨  ( 2  /L  𝑃 )  =  0  ∨  ( 2  /L  𝑃 )  =  1 ) ) | 
						
							| 29 |  | simpl | ⊢ ( ( ( 2  /L  𝑃 )  =  - 1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( 2  /L  𝑃 )  =  - 1 ) | 
						
							| 30 | 16 | notbid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ↔  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 31 | 30 | biimpar | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } )  →  ¬  2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) | 
						
							| 32 |  | m1expo | ⊢ ( ( ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 )  ∈  ℤ  ∧  ¬  2  ∥  ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  →  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  - 1 ) | 
						
							| 33 | 12 31 32 | syl2an2r | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } )  →  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) )  =  - 1 ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } )  →  - 1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 2  /L  𝑃 )  =  - 1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) )  →  - 1  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 36 | 29 35 | eqtrd | ⊢ ( ( ( 2  /L  𝑃 )  =  - 1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) | 
						
							| 37 | 36 | a1d | ⊢ ( ( ( 2  /L  𝑃 )  =  - 1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) | 
						
							| 38 | 37 | exp32 | ⊢ ( ( 2  /L  𝑃 )  =  - 1  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 39 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  𝑃  ≠  2 ) | 
						
							| 41 | 40 | necomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  2  ≠  𝑃 ) | 
						
							| 42 | 39 41 | sylbi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  2  ≠  𝑃 ) | 
						
							| 43 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 44 |  | prmrp | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 45 | 43 1 44 | sylancr | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 2  gcd  𝑃 )  =  1  ↔  2  ≠  𝑃 ) ) | 
						
							| 46 | 42 45 | mpbird | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 47 |  | lgsne0 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( 2  /L  𝑃 )  ≠  0  ↔  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 48 | 22 24 47 | sylancr | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 2  /L  𝑃 )  ≠  0  ↔  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 49 | 46 48 | mpbird | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  ≠  0 ) | 
						
							| 50 |  | eqneqall | ⊢ ( ( 2  /L  𝑃 )  =  0  →  ( ( 2  /L  𝑃 )  ≠  0  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 51 | 49 50 | syl5 | ⊢ ( ( 2  /L  𝑃 )  =  0  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 52 |  | pm2.24 | ⊢ ( ( 2  /L  𝑃 )  =  1  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) | 
						
							| 53 | 52 | 2a1d | ⊢ ( ( 2  /L  𝑃 )  =  1  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 54 | 38 51 53 | 3jaoi | ⊢ ( ( ( 2  /L  𝑃 )  =  - 1  ∨  ( 2  /L  𝑃 )  =  0  ∨  ( 2  /L  𝑃 )  =  1 )  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 55 | 28 54 | sylbi | ⊢ ( ( 2  /L  𝑃 )  ∈  { - 1 ,  0 ,  1 }  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) ) | 
						
							| 56 | 26 55 | mpcom | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( ¬  ( 2  /L  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) | 
						
							| 57 | 56 | com13 | ⊢ ( ¬  ( 2  /L  𝑃 )  =  1  →  ( ¬  ( 𝑃  mod  8 )  ∈  { 1 ,  7 }  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) ) | 
						
							| 58 | 21 57 | bija | ⊢ ( ( ( 2  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  8 )  ∈  { 1 ,  7 } )  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) ) | 
						
							| 59 | 3 58 | mpcom | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ ( ( ( 𝑃 ↑ 2 )  −  1 )  /  8 ) ) ) |