Metamath Proof Explorer


Theorem 2lgsoddprmlem4

Description: Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem4 N¬2N2N218Nmod817

Proof

Step Hyp Ref Expression
1 eqidd N¬2NNmod8=Nmod8
2 2lgsoddprmlem2 N¬2NNmod8=Nmod82N2182Nmod8218
3 1 2 mpd3an3 N¬2N2N2182Nmod8218
4 2lgsoddprmlem3 N¬2NNmod8=Nmod82Nmod8218Nmod817
5 1 4 mpd3an3 N¬2N2Nmod8218Nmod817
6 3 5 bitrd N¬2N2N218Nmod817