Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2lgsoddprmlem3b | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sq3 | |- ( 3 ^ 2 ) = 9 | |
| 2 | 1 | oveq1i | |- ( ( 3 ^ 2 ) - 1 ) = ( 9 - 1 ) | 
| 3 | 9m1e8 | |- ( 9 - 1 ) = 8 | |
| 4 | 2 3 | eqtri | |- ( ( 3 ^ 2 ) - 1 ) = 8 | 
| 5 | 4 | oveq1i | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = ( 8 / 8 ) | 
| 6 | 8cn | |- 8 e. CC | |
| 7 | 0re | |- 0 e. RR | |
| 8 | 8pos | |- 0 < 8 | |
| 9 | 7 8 | gtneii | |- 8 =/= 0 | 
| 10 | 6 9 | dividi | |- ( 8 / 8 ) = 1 | 
| 11 | 5 10 | eqtri | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 |