Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2lgsoddprmlem3b | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 2 | 1 | oveq1i | ⊢ ( ( 3 ↑ 2 ) − 1 ) = ( 9 − 1 ) | 
| 3 | 9m1e8 | ⊢ ( 9 − 1 ) = 8 | |
| 4 | 2 3 | eqtri | ⊢ ( ( 3 ↑ 2 ) − 1 ) = 8 | 
| 5 | 4 | oveq1i | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = ( 8 / 8 ) | 
| 6 | 8cn | ⊢ 8 ∈ ℂ | |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | 8pos | ⊢ 0 < 8 | |
| 9 | 7 8 | gtneii | ⊢ 8 ≠ 0 | 
| 10 | 6 9 | dividi | ⊢ ( 8 / 8 ) = 1 | 
| 11 | 5 10 | eqtri | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = 1 |