Metamath Proof Explorer


Theorem 2lgsoddprmlem3b

Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3b 3218=1

Proof

Step Hyp Ref Expression
1 sq3 32=9
2 1 oveq1i 321=91
3 9m1e8 91=8
4 2 3 eqtri 321=8
5 4 oveq1i 3218=88
6 8cn 8
7 0re 0
8 8pos 0<8
9 7 8 gtneii 80
10 6 9 dividi 88=1
11 5 10 eqtri 3218=1