| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 3 |  | zmodfz | ⊢ ( ( 𝐴  ∈  ℤ  ∧  8  ∈  ℕ )  →  ( 𝐴  mod  8 )  ∈  ( 0 ... ( 8  −  1 ) ) ) | 
						
							| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( 𝐴  mod  8 )  ∈  ( 0 ... ( 8  −  1 ) ) ) | 
						
							| 5 |  | 8m1e7 | ⊢ ( 8  −  1 )  =  7 | 
						
							| 6 | 5 | oveq2i | ⊢ ( 0 ... ( 8  −  1 ) )  =  ( 0 ... 7 ) | 
						
							| 7 | 4 6 | eleqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( 𝐴  mod  8 )  ∈  ( 0 ... 7 ) ) | 
						
							| 8 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 9 |  | z0even | ⊢ 2  ∥  0 | 
						
							| 10 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 11 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 12 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 13 | 11 12 | addcomi | ⊢ ( 1  +  - 1 )  =  ( - 1  +  1 ) | 
						
							| 14 | 10 13 | eqtr3i | ⊢ 0  =  ( - 1  +  1 ) | 
						
							| 15 | 9 14 | breqtri | ⊢ 2  ∥  ( - 1  +  1 ) | 
						
							| 16 |  | noel | ⊢ ¬  ( 𝐴  mod  8 )  ∈  ∅ | 
						
							| 17 | 16 | pm2.21i | ⊢ ( ( 𝐴  mod  8 )  ∈  ∅  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 18 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 19 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 20 |  | fzn | ⊢ ( ( 0  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( - 1  <  0  ↔  ( 0 ... - 1 )  =  ∅ ) ) | 
						
							| 21 | 19 8 20 | mp2an | ⊢ ( - 1  <  0  ↔  ( 0 ... - 1 )  =  ∅ ) | 
						
							| 22 | 18 21 | mpbi | ⊢ ( 0 ... - 1 )  =  ∅ | 
						
							| 23 | 17 22 | eleq2s | ⊢ ( ( 𝐴  mod  8 )  ∈  ( 0 ... - 1 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... - 1 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) | 
						
							| 25 | 8 15 24 | 3pm3.2i | ⊢ ( - 1  ∈  ℤ  ∧  2  ∥  ( - 1  +  1 )  ∧  ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... - 1 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) ) | 
						
							| 26 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 27 |  | ssun1 | ⊢ { 1 ,  7 }  ⊆  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 28 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 29 | 28 | prid1 | ⊢ 1  ∈  { 1 ,  7 } | 
						
							| 30 | 27 29 | sselii | ⊢ 1  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 31 | 25 14 26 30 | lgsdir2lem2 | ⊢ ( 1  ∈  ℤ  ∧  2  ∥  ( 1  +  1 )  ∧  ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... 1 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) ) | 
						
							| 32 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 33 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 34 |  | ssun2 | ⊢ { 3 ,  5 }  ⊆  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 35 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 36 | 35 | prid1 | ⊢ 3  ∈  { 3 ,  5 } | 
						
							| 37 | 34 36 | sselii | ⊢ 3  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 38 | 31 32 33 37 | lgsdir2lem2 | ⊢ ( 3  ∈  ℤ  ∧  2  ∥  ( 3  +  1 )  ∧  ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... 3 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) ) | 
						
							| 39 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 40 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 41 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 42 | 41 | elexi | ⊢ 5  ∈  V | 
						
							| 43 | 42 | prid2 | ⊢ 5  ∈  { 3 ,  5 } | 
						
							| 44 | 34 43 | sselii | ⊢ 5  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 45 | 38 39 40 44 | lgsdir2lem2 | ⊢ ( 5  ∈  ℤ  ∧  2  ∥  ( 5  +  1 )  ∧  ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... 5 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) ) | 
						
							| 46 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 47 |  | df-7 | ⊢ 7  =  ( 6  +  1 ) | 
						
							| 48 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 49 | 48 | elexi | ⊢ 7  ∈  V | 
						
							| 50 | 49 | prid2 | ⊢ 7  ∈  { 1 ,  7 } | 
						
							| 51 | 27 50 | sselii | ⊢ 7  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) | 
						
							| 52 | 45 46 47 51 | lgsdir2lem2 | ⊢ ( 7  ∈  ℤ  ∧  2  ∥  ( 7  +  1 )  ∧  ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... 7 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) ) | 
						
							| 53 | 52 | simp3i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( ( 𝐴  mod  8 )  ∈  ( 0 ... 7 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) ) | 
						
							| 54 | 7 53 | mpd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) |