| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex | ⊢ ( 𝐴  mod  8 )  ∈  V | 
						
							| 2 | 1 | elpr | ⊢ ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( 𝐴  mod  8 )  =  1  ∨  ( 𝐴  mod  8 )  =  7 ) ) | 
						
							| 3 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  1  ∈  ℝ ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  𝐵  ∈  ℤ ) | 
						
							| 7 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 8 |  | 8pos | ⊢ 0  <  8 | 
						
							| 9 | 7 8 | elrpii | ⊢ 8  ∈  ℝ+ | 
						
							| 10 | 9 | a1i | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  8  ∈  ℝ+ ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( 𝐴  mod  8 )  =  1 ) | 
						
							| 12 |  | lgsdir2lem1 | ⊢ ( ( ( 1  mod  8 )  =  1  ∧  ( - 1  mod  8 )  =  7 )  ∧  ( ( 3  mod  8 )  =  3  ∧  ( - 3  mod  8 )  =  5 ) ) | 
						
							| 13 | 12 | simpli | ⊢ ( ( 1  mod  8 )  =  1  ∧  ( - 1  mod  8 )  =  7 ) | 
						
							| 14 | 13 | simpli | ⊢ ( 1  mod  8 )  =  1 | 
						
							| 15 | 11 14 | eqtr4di | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( 𝐴  mod  8 )  =  ( 1  mod  8 ) ) | 
						
							| 16 |  | modmul1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( 𝐵  ∈  ℤ  ∧  8  ∈  ℝ+ )  ∧  ( 𝐴  mod  8 )  =  ( 1  mod  8 ) )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( ( 1  ·  𝐵 )  mod  8 ) ) | 
						
							| 17 | 4 5 6 10 15 16 | syl221anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( ( 1  ·  𝐵 )  mod  8 ) ) | 
						
							| 18 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  𝐵  ∈  ℂ ) | 
						
							| 20 | 19 | mullidd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( 1  ·  𝐵 )  =  𝐵 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( ( 1  ·  𝐵 )  mod  8 )  =  ( 𝐵  mod  8 ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( 𝐵  mod  8 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  1 )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 24 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  𝐴  ∈  ℝ ) | 
						
							| 25 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  - 1  ∈  ℝ ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  𝐵  ∈  ℤ ) | 
						
							| 28 | 9 | a1i | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  8  ∈  ℝ+ ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( 𝐴  mod  8 )  =  7 ) | 
						
							| 30 | 13 | simpri | ⊢ ( - 1  mod  8 )  =  7 | 
						
							| 31 | 29 30 | eqtr4di | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( 𝐴  mod  8 )  =  ( - 1  mod  8 ) ) | 
						
							| 32 |  | modmul1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  - 1  ∈  ℝ )  ∧  ( 𝐵  ∈  ℤ  ∧  8  ∈  ℝ+ )  ∧  ( 𝐴  mod  8 )  =  ( - 1  mod  8 ) )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( ( - 1  ·  𝐵 )  mod  8 ) ) | 
						
							| 33 | 24 26 27 28 31 32 | syl221anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( ( - 1  ·  𝐵 )  mod  8 ) ) | 
						
							| 34 | 18 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  𝐵  ∈  ℂ ) | 
						
							| 35 | 34 | mulm1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( - 1  ·  𝐵 )  =  - 𝐵 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( - 1  ·  𝐵 )  mod  8 )  =  ( - 𝐵  mod  8 ) ) | 
						
							| 37 | 33 36 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( - 𝐵  mod  8 ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 39 |  | znegcl | ⊢ ( 𝐵  ∈  ℤ  →  - 𝐵  ∈  ℤ ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑥  =  - 𝐵  →  ( 𝑥  mod  8 )  =  ( - 𝐵  mod  8 ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝑥  =  - 𝐵  →  ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 42 |  | negeq | ⊢ ( 𝑥  =  - 𝐵  →  - 𝑥  =  - - 𝐵 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝑥  =  - 𝐵  →  ( - 𝑥  mod  8 )  =  ( - - 𝐵  mod  8 ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑥  =  - 𝐵  →  ( ( - 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( - - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 45 | 41 44 | imbi12d | ⊢ ( 𝑥  =  - 𝐵  →  ( ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  →  ( - 𝑥  mod  8 )  ∈  { 1 ,  7 } )  ↔  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( - - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) ) | 
						
							| 46 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 47 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 48 |  | mulcom | ⊢ ( ( 𝑥  ∈  ℂ  ∧  - 1  ∈  ℂ )  →  ( 𝑥  ·  - 1 )  =  ( - 1  ·  𝑥 ) ) | 
						
							| 49 | 47 48 | mpan2 | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ·  - 1 )  =  ( - 1  ·  𝑥 ) ) | 
						
							| 50 |  | mulm1 | ⊢ ( 𝑥  ∈  ℂ  →  ( - 1  ·  𝑥 )  =  - 𝑥 ) | 
						
							| 51 | 49 50 | eqtrd | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ·  - 1 )  =  - 𝑥 ) | 
						
							| 52 | 46 51 | syl | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  ·  - 1 )  =  - 𝑥 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( 𝑥  ·  - 1 )  =  - 𝑥 ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( - 𝑥  mod  8 ) ) | 
						
							| 55 |  | zre | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  𝑥  ∈  ℝ ) | 
						
							| 57 |  | 1red | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  1  ∈  ℝ ) | 
						
							| 58 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 59 | 58 | a1i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  - 1  ∈  ℤ ) | 
						
							| 60 | 9 | a1i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  8  ∈  ℝ+ ) | 
						
							| 61 |  | simpr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( 𝑥  mod  8 )  =  1 ) | 
						
							| 62 | 61 14 | eqtr4di | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( 𝑥  mod  8 )  =  ( 1  mod  8 ) ) | 
						
							| 63 |  | modmul1 | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( - 1  ∈  ℤ  ∧  8  ∈  ℝ+ )  ∧  ( 𝑥  mod  8 )  =  ( 1  mod  8 ) )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( ( 1  ·  - 1 )  mod  8 ) ) | 
						
							| 64 | 56 57 59 60 62 63 | syl221anc | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( ( 1  ·  - 1 )  mod  8 ) ) | 
						
							| 65 | 54 64 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( - 𝑥  mod  8 )  =  ( ( 1  ·  - 1 )  mod  8 ) ) | 
						
							| 66 | 47 | mullidi | ⊢ ( 1  ·  - 1 )  =  - 1 | 
						
							| 67 | 66 | oveq1i | ⊢ ( ( 1  ·  - 1 )  mod  8 )  =  ( - 1  mod  8 ) | 
						
							| 68 | 67 30 | eqtri | ⊢ ( ( 1  ·  - 1 )  mod  8 )  =  7 | 
						
							| 69 | 65 68 | eqtrdi | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  1 )  →  ( - 𝑥  mod  8 )  =  7 ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑥  mod  8 )  =  1  →  ( - 𝑥  mod  8 )  =  7 ) ) | 
						
							| 71 | 52 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( 𝑥  ·  - 1 )  =  - 𝑥 ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( - 𝑥  mod  8 ) ) | 
						
							| 73 | 55 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  𝑥  ∈  ℝ ) | 
						
							| 74 | 25 | a1i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  - 1  ∈  ℝ ) | 
						
							| 75 | 58 | a1i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  - 1  ∈  ℤ ) | 
						
							| 76 | 9 | a1i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  8  ∈  ℝ+ ) | 
						
							| 77 |  | simpr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( 𝑥  mod  8 )  =  7 ) | 
						
							| 78 | 77 30 | eqtr4di | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( 𝑥  mod  8 )  =  ( - 1  mod  8 ) ) | 
						
							| 79 |  | modmul1 | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  - 1  ∈  ℝ )  ∧  ( - 1  ∈  ℤ  ∧  8  ∈  ℝ+ )  ∧  ( 𝑥  mod  8 )  =  ( - 1  mod  8 ) )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( ( - 1  ·  - 1 )  mod  8 ) ) | 
						
							| 80 | 73 74 75 76 78 79 | syl221anc | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( ( 𝑥  ·  - 1 )  mod  8 )  =  ( ( - 1  ·  - 1 )  mod  8 ) ) | 
						
							| 81 | 72 80 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( - 𝑥  mod  8 )  =  ( ( - 1  ·  - 1 )  mod  8 ) ) | 
						
							| 82 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 83 | 82 | oveq1i | ⊢ ( ( - 1  ·  - 1 )  mod  8 )  =  ( 1  mod  8 ) | 
						
							| 84 | 83 14 | eqtri | ⊢ ( ( - 1  ·  - 1 )  mod  8 )  =  1 | 
						
							| 85 | 81 84 | eqtrdi | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  mod  8 )  =  7 )  →  ( - 𝑥  mod  8 )  =  1 ) | 
						
							| 86 | 85 | ex | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑥  mod  8 )  =  7  →  ( - 𝑥  mod  8 )  =  1 ) ) | 
						
							| 87 | 70 86 | orim12d | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 𝑥  mod  8 )  =  1  ∨  ( 𝑥  mod  8 )  =  7 )  →  ( ( - 𝑥  mod  8 )  =  7  ∨  ( - 𝑥  mod  8 )  =  1 ) ) ) | 
						
							| 88 |  | ovex | ⊢ ( 𝑥  mod  8 )  ∈  V | 
						
							| 89 | 88 | elpr | ⊢ ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( 𝑥  mod  8 )  =  1  ∨  ( 𝑥  mod  8 )  =  7 ) ) | 
						
							| 90 |  | ovex | ⊢ ( - 𝑥  mod  8 )  ∈  V | 
						
							| 91 | 90 | elpr | ⊢ ( ( - 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( - 𝑥  mod  8 )  =  1  ∨  ( - 𝑥  mod  8 )  =  7 ) ) | 
						
							| 92 |  | orcom | ⊢ ( ( ( - 𝑥  mod  8 )  =  1  ∨  ( - 𝑥  mod  8 )  =  7 )  ↔  ( ( - 𝑥  mod  8 )  =  7  ∨  ( - 𝑥  mod  8 )  =  1 ) ) | 
						
							| 93 | 91 92 | bitri | ⊢ ( ( - 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( - 𝑥  mod  8 )  =  7  ∨  ( - 𝑥  mod  8 )  =  1 ) ) | 
						
							| 94 | 87 89 93 | 3imtr4g | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  →  ( - 𝑥  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 95 | 45 94 | vtoclga | ⊢ ( - 𝐵  ∈  ℤ  →  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( - - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 96 | 39 95 | syl | ⊢ ( 𝐵  ∈  ℤ  →  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( - - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 97 | 18 | negnegd | ⊢ ( 𝐵  ∈  ℤ  →  - - 𝐵  =  𝐵 ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( 𝐵  ∈  ℤ  →  ( - - 𝐵  mod  8 )  =  ( 𝐵  mod  8 ) ) | 
						
							| 99 | 98 | eleq1d | ⊢ ( 𝐵  ∈  ℤ  →  ( ( - - 𝐵  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 100 | 96 99 | sylibd | ⊢ ( 𝐵  ∈  ℤ  →  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 101 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  mod  8 )  =  ( 𝐵  mod  8 ) ) | 
						
							| 102 | 101 | eleq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 103 |  | negeq | ⊢ ( 𝑥  =  𝐵  →  - 𝑥  =  - 𝐵 ) | 
						
							| 104 | 103 | oveq1d | ⊢ ( 𝑥  =  𝐵  →  ( - 𝑥  mod  8 )  =  ( - 𝐵  mod  8 ) ) | 
						
							| 105 | 104 | eleq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( - 𝑥  mod  8 )  ∈  { 1 ,  7 }  ↔  ( - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 106 | 102 105 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝑥  mod  8 )  ∈  { 1 ,  7 }  →  ( - 𝑥  mod  8 )  ∈  { 1 ,  7 } )  ↔  ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) ) | 
						
							| 107 | 106 94 | vtoclga | ⊢ ( 𝐵  ∈  ℤ  →  ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  ( - 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 108 | 100 107 | impbid | ⊢ ( 𝐵  ∈  ℤ  →  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 109 | 108 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( - 𝐵  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 110 | 38 109 | bitrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  =  7 )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 111 | 23 110 | jaodan | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( 𝐴  mod  8 )  =  1  ∨  ( 𝐴  mod  8 )  =  7 ) )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 112 | 2 111 | sylan2b | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) |