| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
⊢ ( 𝐴 mod 8 ) ∈ V |
| 2 |
1
|
elpr |
⊢ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝐴 mod 8 ) = 1 ∨ ( 𝐴 mod 8 ) = 7 ) ) |
| 3 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 1 ∈ ℝ ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐵 ∈ ℤ ) |
| 7 |
|
8re |
⊢ 8 ∈ ℝ |
| 8 |
|
8pos |
⊢ 0 < 8 |
| 9 |
7 8
|
elrpii |
⊢ 8 ∈ ℝ+ |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 8 ∈ ℝ+ ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 𝐴 mod 8 ) = 1 ) |
| 12 |
|
lgsdir2lem1 |
⊢ ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) ) |
| 13 |
12
|
simpli |
⊢ ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) |
| 14 |
13
|
simpli |
⊢ ( 1 mod 8 ) = 1 |
| 15 |
11 14
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 𝐴 mod 8 ) = ( 1 mod 8 ) ) |
| 16 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝐴 mod 8 ) = ( 1 mod 8 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 1 · 𝐵 ) mod 8 ) ) |
| 17 |
4 5 6 10 15 16
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 1 · 𝐵 ) mod 8 ) ) |
| 18 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐵 ∈ ℂ ) |
| 20 |
19
|
mullidd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 1 · 𝐵 ) mod 8 ) = ( 𝐵 mod 8 ) ) |
| 22 |
17 21
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( 𝐵 mod 8 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 24 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐴 ∈ ℝ ) |
| 25 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 26 |
25
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → - 1 ∈ ℝ ) |
| 27 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐵 ∈ ℤ ) |
| 28 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 8 ∈ ℝ+ ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( 𝐴 mod 8 ) = 7 ) |
| 30 |
13
|
simpri |
⊢ ( - 1 mod 8 ) = 7 |
| 31 |
29 30
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( 𝐴 mod 8 ) = ( - 1 mod 8 ) ) |
| 32 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ - 1 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝐴 mod 8 ) = ( - 1 mod 8 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 1 · 𝐵 ) mod 8 ) ) |
| 33 |
24 26 27 28 31 32
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 1 · 𝐵 ) mod 8 ) ) |
| 34 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐵 ∈ ℂ ) |
| 35 |
34
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( - 1 · 𝐵 ) mod 8 ) = ( - 𝐵 mod 8 ) ) |
| 37 |
33 36
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - 𝐵 mod 8 ) ) |
| 38 |
37
|
eleq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 39 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
| 40 |
|
oveq1 |
⊢ ( 𝑥 = - 𝐵 → ( 𝑥 mod 8 ) = ( - 𝐵 mod 8 ) ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝑥 = - 𝐵 → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 42 |
|
negeq |
⊢ ( 𝑥 = - 𝐵 → - 𝑥 = - - 𝐵 ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝑥 = - 𝐵 → ( - 𝑥 mod 8 ) = ( - - 𝐵 mod 8 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑥 = - 𝐵 → ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 45 |
41 44
|
imbi12d |
⊢ ( 𝑥 = - 𝐵 → ( ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ↔ ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) ) |
| 46 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 47 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 48 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑥 · - 1 ) = ( - 1 · 𝑥 ) ) |
| 49 |
47 48
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · - 1 ) = ( - 1 · 𝑥 ) ) |
| 50 |
|
mulm1 |
⊢ ( 𝑥 ∈ ℂ → ( - 1 · 𝑥 ) = - 𝑥 ) |
| 51 |
49 50
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · - 1 ) = - 𝑥 ) |
| 52 |
46 51
|
syl |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 · - 1 ) = - 𝑥 ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 · - 1 ) = - 𝑥 ) |
| 54 |
53
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( - 𝑥 mod 8 ) ) |
| 55 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 𝑥 ∈ ℝ ) |
| 57 |
|
1red |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 1 ∈ ℝ ) |
| 58 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 59 |
58
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → - 1 ∈ ℤ ) |
| 60 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 8 ∈ ℝ+ ) |
| 61 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 mod 8 ) = 1 ) |
| 62 |
61 14
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 mod 8 ) = ( 1 mod 8 ) ) |
| 63 |
|
modmul1 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( - 1 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝑥 mod 8 ) = ( 1 mod 8 ) ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
| 64 |
56 57 59 60 62 63
|
syl221anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
| 65 |
54 64
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( - 𝑥 mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
| 66 |
47
|
mullidi |
⊢ ( 1 · - 1 ) = - 1 |
| 67 |
66
|
oveq1i |
⊢ ( ( 1 · - 1 ) mod 8 ) = ( - 1 mod 8 ) |
| 68 |
67 30
|
eqtri |
⊢ ( ( 1 · - 1 ) mod 8 ) = 7 |
| 69 |
65 68
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( - 𝑥 mod 8 ) = 7 ) |
| 70 |
69
|
ex |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) = 1 → ( - 𝑥 mod 8 ) = 7 ) ) |
| 71 |
52
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 · - 1 ) = - 𝑥 ) |
| 72 |
71
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( - 𝑥 mod 8 ) ) |
| 73 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → 𝑥 ∈ ℝ ) |
| 74 |
25
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → - 1 ∈ ℝ ) |
| 75 |
58
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → - 1 ∈ ℤ ) |
| 76 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → 8 ∈ ℝ+ ) |
| 77 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 mod 8 ) = 7 ) |
| 78 |
77 30
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 mod 8 ) = ( - 1 mod 8 ) ) |
| 79 |
|
modmul1 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ - 1 ∈ ℝ ) ∧ ( - 1 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝑥 mod 8 ) = ( - 1 mod 8 ) ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
| 80 |
73 74 75 76 78 79
|
syl221anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
| 81 |
72 80
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( - 𝑥 mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
| 82 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 83 |
82
|
oveq1i |
⊢ ( ( - 1 · - 1 ) mod 8 ) = ( 1 mod 8 ) |
| 84 |
83 14
|
eqtri |
⊢ ( ( - 1 · - 1 ) mod 8 ) = 1 |
| 85 |
81 84
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( - 𝑥 mod 8 ) = 1 ) |
| 86 |
85
|
ex |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) = 7 → ( - 𝑥 mod 8 ) = 1 ) ) |
| 87 |
70 86
|
orim12d |
⊢ ( 𝑥 ∈ ℤ → ( ( ( 𝑥 mod 8 ) = 1 ∨ ( 𝑥 mod 8 ) = 7 ) → ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) ) |
| 88 |
|
ovex |
⊢ ( 𝑥 mod 8 ) ∈ V |
| 89 |
88
|
elpr |
⊢ ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝑥 mod 8 ) = 1 ∨ ( 𝑥 mod 8 ) = 7 ) ) |
| 90 |
|
ovex |
⊢ ( - 𝑥 mod 8 ) ∈ V |
| 91 |
90
|
elpr |
⊢ ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( - 𝑥 mod 8 ) = 1 ∨ ( - 𝑥 mod 8 ) = 7 ) ) |
| 92 |
|
orcom |
⊢ ( ( ( - 𝑥 mod 8 ) = 1 ∨ ( - 𝑥 mod 8 ) = 7 ) ↔ ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) |
| 93 |
91 92
|
bitri |
⊢ ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) |
| 94 |
87 89 93
|
3imtr4g |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ) |
| 95 |
45 94
|
vtoclga |
⊢ ( - 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 96 |
39 95
|
syl |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 97 |
18
|
negnegd |
⊢ ( 𝐵 ∈ ℤ → - - 𝐵 = 𝐵 ) |
| 98 |
97
|
oveq1d |
⊢ ( 𝐵 ∈ ℤ → ( - - 𝐵 mod 8 ) = ( 𝐵 mod 8 ) ) |
| 99 |
98
|
eleq1d |
⊢ ( 𝐵 ∈ ℤ → ( ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 100 |
96 99
|
sylibd |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 101 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 mod 8 ) = ( 𝐵 mod 8 ) ) |
| 102 |
101
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 103 |
|
negeq |
⊢ ( 𝑥 = 𝐵 → - 𝑥 = - 𝐵 ) |
| 104 |
103
|
oveq1d |
⊢ ( 𝑥 = 𝐵 → ( - 𝑥 mod 8 ) = ( - 𝐵 mod 8 ) ) |
| 105 |
104
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 106 |
102 105
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ↔ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) ) |
| 107 |
106 94
|
vtoclga |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 108 |
100 107
|
impbid |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 109 |
108
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 110 |
38 109
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 111 |
23 110
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 1 ∨ ( 𝐴 mod 8 ) = 7 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 112 |
2 111
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |