| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( A mod 8 ) e. _V | 
						
							| 2 | 1 | elpr |  |-  ( ( A mod 8 ) e. { 1 , 7 } <-> ( ( A mod 8 ) = 1 \/ ( A mod 8 ) = 7 ) ) | 
						
							| 3 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> A e. RR ) | 
						
							| 5 |  | 1red |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> 1 e. RR ) | 
						
							| 6 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> B e. ZZ ) | 
						
							| 7 |  | 8re |  |-  8 e. RR | 
						
							| 8 |  | 8pos |  |-  0 < 8 | 
						
							| 9 | 7 8 | elrpii |  |-  8 e. RR+ | 
						
							| 10 | 9 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> 8 e. RR+ ) | 
						
							| 11 |  | simpr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( A mod 8 ) = 1 ) | 
						
							| 12 |  | lgsdir2lem1 |  |-  ( ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) /\ ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) ) | 
						
							| 13 | 12 | simpli |  |-  ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) | 
						
							| 14 | 13 | simpli |  |-  ( 1 mod 8 ) = 1 | 
						
							| 15 | 11 14 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( A mod 8 ) = ( 1 mod 8 ) ) | 
						
							| 16 |  | modmul1 |  |-  ( ( ( A e. RR /\ 1 e. RR ) /\ ( B e. ZZ /\ 8 e. RR+ ) /\ ( A mod 8 ) = ( 1 mod 8 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 1 x. B ) mod 8 ) ) | 
						
							| 17 | 4 5 6 10 15 16 | syl221anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( A x. B ) mod 8 ) = ( ( 1 x. B ) mod 8 ) ) | 
						
							| 18 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 19 | 18 | ad2antlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> B e. CC ) | 
						
							| 20 | 19 | mullidd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( 1 x. B ) = B ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( 1 x. B ) mod 8 ) = ( B mod 8 ) ) | 
						
							| 22 | 17 21 | eqtrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( A x. B ) mod 8 ) = ( B mod 8 ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 1 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 24 | 3 | ad2antrr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> A e. RR ) | 
						
							| 25 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> -u 1 e. RR ) | 
						
							| 27 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> B e. ZZ ) | 
						
							| 28 | 9 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> 8 e. RR+ ) | 
						
							| 29 |  | simpr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( A mod 8 ) = 7 ) | 
						
							| 30 | 13 | simpri |  |-  ( -u 1 mod 8 ) = 7 | 
						
							| 31 | 29 30 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( A mod 8 ) = ( -u 1 mod 8 ) ) | 
						
							| 32 |  | modmul1 |  |-  ( ( ( A e. RR /\ -u 1 e. RR ) /\ ( B e. ZZ /\ 8 e. RR+ ) /\ ( A mod 8 ) = ( -u 1 mod 8 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 1 x. B ) mod 8 ) ) | 
						
							| 33 | 24 26 27 28 31 32 | syl221anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( A x. B ) mod 8 ) = ( ( -u 1 x. B ) mod 8 ) ) | 
						
							| 34 | 18 | ad2antlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> B e. CC ) | 
						
							| 35 | 34 | mulm1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( -u 1 x. B ) = -u B ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( -u 1 x. B ) mod 8 ) = ( -u B mod 8 ) ) | 
						
							| 37 | 33 36 | eqtrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( A x. B ) mod 8 ) = ( -u B mod 8 ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 39 |  | znegcl |  |-  ( B e. ZZ -> -u B e. ZZ ) | 
						
							| 40 |  | oveq1 |  |-  ( x = -u B -> ( x mod 8 ) = ( -u B mod 8 ) ) | 
						
							| 41 | 40 | eleq1d |  |-  ( x = -u B -> ( ( x mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 42 |  | negeq |  |-  ( x = -u B -> -u x = -u -u B ) | 
						
							| 43 | 42 | oveq1d |  |-  ( x = -u B -> ( -u x mod 8 ) = ( -u -u B mod 8 ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( x = -u B -> ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 45 | 41 44 | imbi12d |  |-  ( x = -u B -> ( ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) <-> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) ) | 
						
							| 46 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 47 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 48 |  | mulcom |  |-  ( ( x e. CC /\ -u 1 e. CC ) -> ( x x. -u 1 ) = ( -u 1 x. x ) ) | 
						
							| 49 | 47 48 | mpan2 |  |-  ( x e. CC -> ( x x. -u 1 ) = ( -u 1 x. x ) ) | 
						
							| 50 |  | mulm1 |  |-  ( x e. CC -> ( -u 1 x. x ) = -u x ) | 
						
							| 51 | 49 50 | eqtrd |  |-  ( x e. CC -> ( x x. -u 1 ) = -u x ) | 
						
							| 52 | 46 51 | syl |  |-  ( x e. ZZ -> ( x x. -u 1 ) = -u x ) | 
						
							| 53 | 52 | adantr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x x. -u 1 ) = -u x ) | 
						
							| 54 | 53 | oveq1d |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( ( x x. -u 1 ) mod 8 ) = ( -u x mod 8 ) ) | 
						
							| 55 |  | zre |  |-  ( x e. ZZ -> x e. RR ) | 
						
							| 56 | 55 | adantr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> x e. RR ) | 
						
							| 57 |  | 1red |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> 1 e. RR ) | 
						
							| 58 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 59 | 58 | a1i |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> -u 1 e. ZZ ) | 
						
							| 60 | 9 | a1i |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> 8 e. RR+ ) | 
						
							| 61 |  | simpr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x mod 8 ) = 1 ) | 
						
							| 62 | 61 14 | eqtr4di |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( x mod 8 ) = ( 1 mod 8 ) ) | 
						
							| 63 |  | modmul1 |  |-  ( ( ( x e. RR /\ 1 e. RR ) /\ ( -u 1 e. ZZ /\ 8 e. RR+ ) /\ ( x mod 8 ) = ( 1 mod 8 ) ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) | 
						
							| 64 | 56 57 59 60 62 63 | syl221anc |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) | 
						
							| 65 | 54 64 | eqtr3d |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( -u x mod 8 ) = ( ( 1 x. -u 1 ) mod 8 ) ) | 
						
							| 66 | 47 | mullidi |  |-  ( 1 x. -u 1 ) = -u 1 | 
						
							| 67 | 66 | oveq1i |  |-  ( ( 1 x. -u 1 ) mod 8 ) = ( -u 1 mod 8 ) | 
						
							| 68 | 67 30 | eqtri |  |-  ( ( 1 x. -u 1 ) mod 8 ) = 7 | 
						
							| 69 | 65 68 | eqtrdi |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 1 ) -> ( -u x mod 8 ) = 7 ) | 
						
							| 70 | 69 | ex |  |-  ( x e. ZZ -> ( ( x mod 8 ) = 1 -> ( -u x mod 8 ) = 7 ) ) | 
						
							| 71 | 52 | adantr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x x. -u 1 ) = -u x ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( ( x x. -u 1 ) mod 8 ) = ( -u x mod 8 ) ) | 
						
							| 73 | 55 | adantr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> x e. RR ) | 
						
							| 74 | 25 | a1i |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> -u 1 e. RR ) | 
						
							| 75 | 58 | a1i |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> -u 1 e. ZZ ) | 
						
							| 76 | 9 | a1i |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> 8 e. RR+ ) | 
						
							| 77 |  | simpr |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x mod 8 ) = 7 ) | 
						
							| 78 | 77 30 | eqtr4di |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( x mod 8 ) = ( -u 1 mod 8 ) ) | 
						
							| 79 |  | modmul1 |  |-  ( ( ( x e. RR /\ -u 1 e. RR ) /\ ( -u 1 e. ZZ /\ 8 e. RR+ ) /\ ( x mod 8 ) = ( -u 1 mod 8 ) ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) | 
						
							| 80 | 73 74 75 76 78 79 | syl221anc |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( ( x x. -u 1 ) mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) | 
						
							| 81 | 72 80 | eqtr3d |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( -u x mod 8 ) = ( ( -u 1 x. -u 1 ) mod 8 ) ) | 
						
							| 82 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 83 | 82 | oveq1i |  |-  ( ( -u 1 x. -u 1 ) mod 8 ) = ( 1 mod 8 ) | 
						
							| 84 | 83 14 | eqtri |  |-  ( ( -u 1 x. -u 1 ) mod 8 ) = 1 | 
						
							| 85 | 81 84 | eqtrdi |  |-  ( ( x e. ZZ /\ ( x mod 8 ) = 7 ) -> ( -u x mod 8 ) = 1 ) | 
						
							| 86 | 85 | ex |  |-  ( x e. ZZ -> ( ( x mod 8 ) = 7 -> ( -u x mod 8 ) = 1 ) ) | 
						
							| 87 | 70 86 | orim12d |  |-  ( x e. ZZ -> ( ( ( x mod 8 ) = 1 \/ ( x mod 8 ) = 7 ) -> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) ) | 
						
							| 88 |  | ovex |  |-  ( x mod 8 ) e. _V | 
						
							| 89 | 88 | elpr |  |-  ( ( x mod 8 ) e. { 1 , 7 } <-> ( ( x mod 8 ) = 1 \/ ( x mod 8 ) = 7 ) ) | 
						
							| 90 |  | ovex |  |-  ( -u x mod 8 ) e. _V | 
						
							| 91 | 90 | elpr |  |-  ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( ( -u x mod 8 ) = 1 \/ ( -u x mod 8 ) = 7 ) ) | 
						
							| 92 |  | orcom |  |-  ( ( ( -u x mod 8 ) = 1 \/ ( -u x mod 8 ) = 7 ) <-> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) | 
						
							| 93 | 91 92 | bitri |  |-  ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( ( -u x mod 8 ) = 7 \/ ( -u x mod 8 ) = 1 ) ) | 
						
							| 94 | 87 89 93 | 3imtr4g |  |-  ( x e. ZZ -> ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 95 | 45 94 | vtoclga |  |-  ( -u B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 96 | 39 95 | syl |  |-  ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( -u -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 97 | 18 | negnegd |  |-  ( B e. ZZ -> -u -u B = B ) | 
						
							| 98 | 97 | oveq1d |  |-  ( B e. ZZ -> ( -u -u B mod 8 ) = ( B mod 8 ) ) | 
						
							| 99 | 98 | eleq1d |  |-  ( B e. ZZ -> ( ( -u -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 100 | 96 99 | sylibd |  |-  ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } -> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 101 |  | oveq1 |  |-  ( x = B -> ( x mod 8 ) = ( B mod 8 ) ) | 
						
							| 102 | 101 | eleq1d |  |-  ( x = B -> ( ( x mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 103 |  | negeq |  |-  ( x = B -> -u x = -u B ) | 
						
							| 104 | 103 | oveq1d |  |-  ( x = B -> ( -u x mod 8 ) = ( -u B mod 8 ) ) | 
						
							| 105 | 104 | eleq1d |  |-  ( x = B -> ( ( -u x mod 8 ) e. { 1 , 7 } <-> ( -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 106 | 102 105 | imbi12d |  |-  ( x = B -> ( ( ( x mod 8 ) e. { 1 , 7 } -> ( -u x mod 8 ) e. { 1 , 7 } ) <-> ( ( B mod 8 ) e. { 1 , 7 } -> ( -u B mod 8 ) e. { 1 , 7 } ) ) ) | 
						
							| 107 | 106 94 | vtoclga |  |-  ( B e. ZZ -> ( ( B mod 8 ) e. { 1 , 7 } -> ( -u B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 108 | 100 107 | impbid |  |-  ( B e. ZZ -> ( ( -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 109 | 108 | ad2antlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( -u B mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 110 | 38 109 | bitrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) = 7 ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 111 | 23 110 | jaodan |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 1 \/ ( A mod 8 ) = 7 ) ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 112 | 2 111 | sylan2b |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( A mod 8 ) e. { 1 , 7 } ) -> ( ( ( A x. B ) mod 8 ) e. { 1 , 7 } <-> ( B mod 8 ) e. { 1 , 7 } ) ) |