| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( A mod 8 ) e. _V | 
						
							| 2 | 1 | elpr |  |-  ( ( A mod 8 ) e. { 3 , 5 } <-> ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) ) | 
						
							| 3 |  | ovex |  |-  ( B mod 8 ) e. _V | 
						
							| 4 | 3 | elpr |  |-  ( ( B mod 8 ) e. { 3 , 5 } <-> ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) | 
						
							| 5 | 2 4 | anbi12i |  |-  ( ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) <-> ( ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) /\ ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) ) | 
						
							| 6 |  | simpll |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> A e. ZZ ) | 
						
							| 7 |  | 3z |  |-  3 e. ZZ | 
						
							| 8 | 7 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> 3 e. ZZ ) | 
						
							| 9 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> B e. ZZ ) | 
						
							| 10 |  | 8re |  |-  8 e. RR | 
						
							| 11 |  | 8pos |  |-  0 < 8 | 
						
							| 12 | 10 11 | elrpii |  |-  8 e. RR+ | 
						
							| 13 | 12 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> 8 e. RR+ ) | 
						
							| 14 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = 3 ) | 
						
							| 15 |  | lgsdir2lem1 |  |-  ( ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) /\ ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) ) | 
						
							| 16 | 15 | simpri |  |-  ( ( 3 mod 8 ) = 3 /\ ( -u 3 mod 8 ) = 5 ) | 
						
							| 17 | 16 | simpli |  |-  ( 3 mod 8 ) = 3 | 
						
							| 18 | 14 17 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = ( 3 mod 8 ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = 3 ) | 
						
							| 20 | 19 17 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = ( 3 mod 8 ) ) | 
						
							| 21 | 6 8 9 8 13 18 20 | modmul12d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) ) | 
						
							| 22 | 21 | orcd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 3 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 24 |  | simpll |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> A e. ZZ ) | 
						
							| 25 |  | znegcl |  |-  ( 3 e. ZZ -> -u 3 e. ZZ ) | 
						
							| 26 | 7 25 | mp1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> -u 3 e. ZZ ) | 
						
							| 27 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> B e. ZZ ) | 
						
							| 28 | 7 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> 3 e. ZZ ) | 
						
							| 29 | 12 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> 8 e. RR+ ) | 
						
							| 30 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = 5 ) | 
						
							| 31 | 16 | simpri |  |-  ( -u 3 mod 8 ) = 5 | 
						
							| 32 | 30 31 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( A mod 8 ) = ( -u 3 mod 8 ) ) | 
						
							| 33 |  | simprr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = 3 ) | 
						
							| 34 | 33 17 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( B mod 8 ) = ( 3 mod 8 ) ) | 
						
							| 35 | 24 26 27 28 29 32 34 | modmul12d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 3 x. 3 ) mod 8 ) ) | 
						
							| 36 |  | 3cn |  |-  3 e. CC | 
						
							| 37 | 36 36 | mulneg1i |  |-  ( -u 3 x. 3 ) = -u ( 3 x. 3 ) | 
						
							| 38 | 37 | oveq1i |  |-  ( ( -u 3 x. 3 ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) | 
						
							| 39 | 35 38 | eqtrdi |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) | 
						
							| 40 | 39 | olcd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 3 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 42 |  | simpll |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> A e. ZZ ) | 
						
							| 43 | 7 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> 3 e. ZZ ) | 
						
							| 44 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> B e. ZZ ) | 
						
							| 45 | 7 25 | mp1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> -u 3 e. ZZ ) | 
						
							| 46 | 12 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> 8 e. RR+ ) | 
						
							| 47 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = 3 ) | 
						
							| 48 | 47 17 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = ( 3 mod 8 ) ) | 
						
							| 49 |  | simprr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = 5 ) | 
						
							| 50 | 49 31 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = ( -u 3 mod 8 ) ) | 
						
							| 51 | 42 43 44 45 46 48 50 | modmul12d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. -u 3 ) mod 8 ) ) | 
						
							| 52 | 36 36 | mulneg2i |  |-  ( 3 x. -u 3 ) = -u ( 3 x. 3 ) | 
						
							| 53 | 52 | oveq1i |  |-  ( ( 3 x. -u 3 ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) | 
						
							| 54 | 51 53 | eqtrdi |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) | 
						
							| 55 | 54 | olcd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 56 | 55 | ex |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 3 /\ ( B mod 8 ) = 5 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 57 |  | simpll |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> A e. ZZ ) | 
						
							| 58 | 7 25 | mp1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> -u 3 e. ZZ ) | 
						
							| 59 |  | simplr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> B e. ZZ ) | 
						
							| 60 | 12 | a1i |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> 8 e. RR+ ) | 
						
							| 61 |  | simprl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = 5 ) | 
						
							| 62 | 61 31 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( A mod 8 ) = ( -u 3 mod 8 ) ) | 
						
							| 63 |  | simprr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = 5 ) | 
						
							| 64 | 63 31 | eqtr4di |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( B mod 8 ) = ( -u 3 mod 8 ) ) | 
						
							| 65 | 57 58 59 58 60 62 64 | modmul12d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( -u 3 x. -u 3 ) mod 8 ) ) | 
						
							| 66 | 36 36 | mul2negi |  |-  ( -u 3 x. -u 3 ) = ( 3 x. 3 ) | 
						
							| 67 | 66 | oveq1i |  |-  ( ( -u 3 x. -u 3 ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) | 
						
							| 68 | 65 67 | eqtrdi |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) ) | 
						
							| 69 | 68 | orcd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 70 | 69 | ex |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) = 5 /\ ( B mod 8 ) = 5 ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 71 | 23 41 56 70 | ccased |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( ( A mod 8 ) = 3 \/ ( A mod 8 ) = 5 ) /\ ( ( B mod 8 ) = 3 \/ ( B mod 8 ) = 5 ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 72 | 5 71 | biimtrid |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 74 |  | ovex |  |-  ( ( A x. B ) mod 8 ) e. _V | 
						
							| 75 | 74 | elpr |  |-  ( ( ( A x. B ) mod 8 ) e. { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } <-> ( ( ( A x. B ) mod 8 ) = ( ( 3 x. 3 ) mod 8 ) \/ ( ( A x. B ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) ) ) | 
						
							| 76 | 73 75 | sylibr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( A x. B ) mod 8 ) e. { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } ) | 
						
							| 77 |  | df-9 |  |-  9 = ( 8 + 1 ) | 
						
							| 78 |  | 8cn |  |-  8 e. CC | 
						
							| 79 |  | ax-1cn |  |-  1 e. CC | 
						
							| 80 | 78 79 | addcomi |  |-  ( 8 + 1 ) = ( 1 + 8 ) | 
						
							| 81 | 77 80 | eqtri |  |-  9 = ( 1 + 8 ) | 
						
							| 82 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 83 | 78 | mullidi |  |-  ( 1 x. 8 ) = 8 | 
						
							| 84 | 83 | oveq2i |  |-  ( 1 + ( 1 x. 8 ) ) = ( 1 + 8 ) | 
						
							| 85 | 81 82 84 | 3eqtr4i |  |-  ( 3 x. 3 ) = ( 1 + ( 1 x. 8 ) ) | 
						
							| 86 | 85 | oveq1i |  |-  ( ( 3 x. 3 ) mod 8 ) = ( ( 1 + ( 1 x. 8 ) ) mod 8 ) | 
						
							| 87 |  | 1re |  |-  1 e. RR | 
						
							| 88 |  | 1z |  |-  1 e. ZZ | 
						
							| 89 |  | modcyc |  |-  ( ( 1 e. RR /\ 8 e. RR+ /\ 1 e. ZZ ) -> ( ( 1 + ( 1 x. 8 ) ) mod 8 ) = ( 1 mod 8 ) ) | 
						
							| 90 | 87 12 88 89 | mp3an |  |-  ( ( 1 + ( 1 x. 8 ) ) mod 8 ) = ( 1 mod 8 ) | 
						
							| 91 | 86 90 | eqtri |  |-  ( ( 3 x. 3 ) mod 8 ) = ( 1 mod 8 ) | 
						
							| 92 | 15 | simpli |  |-  ( ( 1 mod 8 ) = 1 /\ ( -u 1 mod 8 ) = 7 ) | 
						
							| 93 | 92 | simpli |  |-  ( 1 mod 8 ) = 1 | 
						
							| 94 | 91 93 | eqtri |  |-  ( ( 3 x. 3 ) mod 8 ) = 1 | 
						
							| 95 |  | znegcl |  |-  ( 1 e. ZZ -> -u 1 e. ZZ ) | 
						
							| 96 | 88 95 | mp1i |  |-  ( T. -> -u 1 e. ZZ ) | 
						
							| 97 |  | 3nn |  |-  3 e. NN | 
						
							| 98 | 97 97 | nnmulcli |  |-  ( 3 x. 3 ) e. NN | 
						
							| 99 | 98 | nnzi |  |-  ( 3 x. 3 ) e. ZZ | 
						
							| 100 | 99 | a1i |  |-  ( T. -> ( 3 x. 3 ) e. ZZ ) | 
						
							| 101 | 88 | a1i |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 102 | 12 | a1i |  |-  ( T. -> 8 e. RR+ ) | 
						
							| 103 |  | eqidd |  |-  ( T. -> ( -u 1 mod 8 ) = ( -u 1 mod 8 ) ) | 
						
							| 104 | 91 | a1i |  |-  ( T. -> ( ( 3 x. 3 ) mod 8 ) = ( 1 mod 8 ) ) | 
						
							| 105 | 96 96 100 101 102 103 104 | modmul12d |  |-  ( T. -> ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( ( -u 1 x. 1 ) mod 8 ) ) | 
						
							| 106 | 105 | mptru |  |-  ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( ( -u 1 x. 1 ) mod 8 ) | 
						
							| 107 | 36 36 | mulcli |  |-  ( 3 x. 3 ) e. CC | 
						
							| 108 | 107 | mulm1i |  |-  ( -u 1 x. ( 3 x. 3 ) ) = -u ( 3 x. 3 ) | 
						
							| 109 | 108 | oveq1i |  |-  ( ( -u 1 x. ( 3 x. 3 ) ) mod 8 ) = ( -u ( 3 x. 3 ) mod 8 ) | 
						
							| 110 | 79 | mulm1i |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 111 | 110 | oveq1i |  |-  ( ( -u 1 x. 1 ) mod 8 ) = ( -u 1 mod 8 ) | 
						
							| 112 | 106 109 111 | 3eqtr3i |  |-  ( -u ( 3 x. 3 ) mod 8 ) = ( -u 1 mod 8 ) | 
						
							| 113 | 92 | simpri |  |-  ( -u 1 mod 8 ) = 7 | 
						
							| 114 | 112 113 | eqtri |  |-  ( -u ( 3 x. 3 ) mod 8 ) = 7 | 
						
							| 115 | 94 114 | preq12i |  |-  { ( ( 3 x. 3 ) mod 8 ) , ( -u ( 3 x. 3 ) mod 8 ) } = { 1 , 7 } | 
						
							| 116 | 76 115 | eleqtrdi |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( ( A mod 8 ) e. { 3 , 5 } /\ ( B mod 8 ) e. { 3 , 5 } ) ) -> ( ( A x. B ) mod 8 ) e. { 1 , 7 } ) |