| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 2 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 3 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 4 | 2 3 | ifcli | ⊢ if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ∈  ℂ | 
						
							| 5 | 1 4 | ifcli | ⊢ if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ∈  ℂ | 
						
							| 6 | 5 | mul02i | ⊢ ( 0  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  0 | 
						
							| 7 |  | iftrue | ⊢ ( 2  ∥  𝐴  →  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐴 )  →  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐴 )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  ( 0  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) ) | 
						
							| 10 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 11 |  | dvdsmultr1 | ⊢ ( ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  𝐴  →  2  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  𝐴  →  2  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐴 )  →  2  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 14 | 13 | iftrued | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐴 )  →  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 15 | 6 9 14 | 3eqtr4a | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐴 )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 16 | 2 3 | ifcli | ⊢ if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ∈  ℂ | 
						
							| 17 | 1 16 | ifcli | ⊢ if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ∈  ℂ | 
						
							| 18 | 17 | mul01i | ⊢ ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  0 )  =  0 | 
						
							| 19 |  | iftrue | ⊢ ( 2  ∥  𝐵  →  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐵 )  →  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐵 )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  0 ) ) | 
						
							| 22 |  | dvdsmultr2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  𝐵  →  2  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 23 | 10 22 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  𝐵  →  2  ∥  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐵 )  →  2  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 25 | 24 | iftrued | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐵 )  →  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  0 ) | 
						
							| 26 | 18 21 25 | 3eqtr4a | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  2  ∥  𝐵 )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 27 | 4 | mullidi | ⊢ ( 1  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) | 
						
							| 28 |  | iftrue | ⊢ ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  →  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  1 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  1 ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  ( 1  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 31 |  | lgsdir2lem4 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 33 | 32 | ifbid | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 34 | 27 30 33 | 3eqtr4a | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 35 | 16 | mulridi | ⊢ ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  1 )  =  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) | 
						
							| 36 |  | iftrue | ⊢ ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  1 ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  1 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  1 ) ) | 
						
							| 39 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 40 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 41 |  | mulcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 42 | 39 40 41 | syl2an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  =  ( ( 𝐵  ·  𝐴 )  mod  8 ) ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( ( 𝐵  ·  𝐴 )  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 46 |  | lgsdir2lem4 | ⊢ ( ( ( 𝐵  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐵  ·  𝐴 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 47 | 46 | ancom1s | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐵  ·  𝐴 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 48 | 47 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐵  ·  𝐴 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 49 | 45 48 | bitrd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 }  ↔  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ) ) | 
						
							| 50 | 49 | ifbid | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 51 | 35 38 50 | 3eqtr4a | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 52 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 53 |  | iffalse | ⊢ ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  →  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  - 1 ) | 
						
							| 54 |  | iffalse | ⊢ ( ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  →  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  - 1 ) | 
						
							| 55 | 53 54 | oveqan12d | ⊢ ( ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 57 |  | lgsdir2lem3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 58 | 57 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 59 |  | elun | ⊢ ( ( 𝐴  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∨  ( 𝐴  mod  8 )  ∈  { 3 ,  5 } ) ) | 
						
							| 60 | 58 59 | sylib | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∨  ( 𝐴  mod  8 )  ∈  { 3 ,  5 } ) ) | 
						
							| 61 | 60 | orcanai | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 } )  →  ( 𝐴  mod  8 )  ∈  { 3 ,  5 } ) | 
						
							| 62 |  | lgsdir2lem3 | ⊢ ( ( 𝐵  ∈  ℤ  ∧  ¬  2  ∥  𝐵 )  →  ( 𝐵  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 63 | 62 | ad2ant2l | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( 𝐵  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) | 
						
							| 64 |  | elun | ⊢ ( ( 𝐵  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  ∨  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) ) | 
						
							| 65 | 63 64 | sylib | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 }  ∨  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) ) | 
						
							| 66 | 65 | orcanai | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } )  →  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) | 
						
							| 67 | 61 66 | anim12dan | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( ( 𝐴  mod  8 )  ∈  { 3 ,  5 }  ∧  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) ) | 
						
							| 68 |  | lgsdir2lem5 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( 𝐴  mod  8 )  ∈  { 3 ,  5 }  ∧  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 69 | 68 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ( 𝐴  mod  8 )  ∈  { 3 ,  5 }  ∧  ( 𝐵  mod  8 )  ∈  { 3 ,  5 } ) )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 70 | 67 69 | syldan | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 71 | 70 | iftrued | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) )  →  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  =  1 ) | 
						
							| 72 | 52 56 71 | 3eqtr4a | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  ∧  ( ¬  ( 𝐴  mod  8 )  ∈  { 1 ,  7 }  ∧  ¬  ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ) )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 73 | 34 51 72 | pm2.61ddan | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 74 |  | iffalse | ⊢ ( ¬  2  ∥  𝐴  →  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 75 |  | iffalse | ⊢ ( ¬  2  ∥  𝐵  →  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 76 | 74 75 | oveqan12d | ⊢ ( ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  ( if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ·  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 78 |  | ioran | ⊢ ( ¬  ( 2  ∥  𝐴  ∨  2  ∥  𝐵 )  ↔  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) ) | 
						
							| 79 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 80 |  | euclemma | ⊢ ( ( 2  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  ( 𝐴  ·  𝐵 )  ↔  ( 2  ∥  𝐴  ∨  2  ∥  𝐵 ) ) ) | 
						
							| 81 | 79 80 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  ( 𝐴  ·  𝐵 )  ↔  ( 2  ∥  𝐴  ∨  2  ∥  𝐵 ) ) ) | 
						
							| 82 | 81 | notbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ¬  2  ∥  ( 𝐴  ·  𝐵 )  ↔  ¬  ( 2  ∥  𝐴  ∨  2  ∥  𝐵 ) ) ) | 
						
							| 83 | 82 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ¬  ( 2  ∥  𝐴  ∨  2  ∥  𝐵 ) )  →  ¬  2  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 84 | 78 83 | sylan2br | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ¬  2  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 85 |  | iffalse | ⊢ ( ¬  2  ∥  ( 𝐴  ·  𝐵 )  →  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  =  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 87 | 73 77 86 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 88 | 15 26 87 | pm2.61ddan | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 89 |  | lgs2 | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  /L  2 )  =  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 90 |  | lgs2 | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵  /L  2 )  =  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 91 | 89 90 | oveqan12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  /L  2 )  ·  ( 𝐵  /L  2 ) )  =  ( if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ·  if ( 2  ∥  𝐵 ,  0 ,  if ( ( 𝐵  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) ) | 
						
							| 92 |  | zmulcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ·  𝐵 )  ∈  ℤ ) | 
						
							| 93 |  | lgs2 | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℤ  →  ( ( 𝐴  ·  𝐵 )  /L  2 )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 94 | 92 93 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  ·  𝐵 )  /L  2 )  =  if ( 2  ∥  ( 𝐴  ·  𝐵 ) ,  0 ,  if ( ( ( 𝐴  ·  𝐵 )  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) | 
						
							| 95 | 88 91 94 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  ·  𝐵 )  /L  2 )  =  ( ( 𝐴  /L  2 )  ·  ( 𝐵  /L  2 ) ) ) |