| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsdir2lem2.1 |
⊢ ( 𝐾 ∈ ℤ ∧ 2 ∥ ( 𝐾 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝐾 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) ) |
| 2 |
|
lgsdir2lem2.2 |
⊢ 𝑀 = ( 𝐾 + 1 ) |
| 3 |
|
lgsdir2lem2.3 |
⊢ 𝑁 = ( 𝑀 + 1 ) |
| 4 |
|
lgsdir2lem2.4 |
⊢ 𝑁 ∈ 𝑆 |
| 5 |
1
|
simp1i |
⊢ 𝐾 ∈ ℤ |
| 6 |
|
peano2z |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 + 1 ) ∈ ℤ ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝐾 + 1 ) ∈ ℤ |
| 8 |
2 7
|
eqeltri |
⊢ 𝑀 ∈ ℤ |
| 9 |
|
peano2z |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 𝑀 + 1 ) ∈ ℤ |
| 11 |
3 10
|
eqeltri |
⊢ 𝑁 ∈ ℤ |
| 12 |
1
|
simp2i |
⊢ 2 ∥ ( 𝐾 + 1 ) |
| 13 |
|
2z |
⊢ 2 ∈ ℤ |
| 14 |
|
dvdsadd |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐾 + 1 ) ∈ ℤ ) → ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 ∥ ( 2 + ( 𝐾 + 1 ) ) ) ) |
| 15 |
13 7 14
|
mp2an |
⊢ ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 ∥ ( 2 + ( 𝐾 + 1 ) ) ) |
| 16 |
12 15
|
mpbi |
⊢ 2 ∥ ( 2 + ( 𝐾 + 1 ) ) |
| 17 |
|
zcn |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) |
| 18 |
5 17
|
ax-mp |
⊢ 𝐾 ∈ ℂ |
| 19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 20 |
18 19
|
addcomi |
⊢ ( 𝐾 + 1 ) = ( 1 + 𝐾 ) |
| 21 |
2 20
|
eqtri |
⊢ 𝑀 = ( 1 + 𝐾 ) |
| 22 |
21
|
oveq1i |
⊢ ( 𝑀 + 1 ) = ( ( 1 + 𝐾 ) + 1 ) |
| 23 |
3 22
|
eqtri |
⊢ 𝑁 = ( ( 1 + 𝐾 ) + 1 ) |
| 24 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 25 |
24
|
oveq1i |
⊢ ( 2 + 𝐾 ) = ( ( 1 + 1 ) + 𝐾 ) |
| 26 |
19 18 19
|
add32i |
⊢ ( ( 1 + 𝐾 ) + 1 ) = ( ( 1 + 1 ) + 𝐾 ) |
| 27 |
25 26
|
eqtr4i |
⊢ ( 2 + 𝐾 ) = ( ( 1 + 𝐾 ) + 1 ) |
| 28 |
23 27
|
eqtr4i |
⊢ 𝑁 = ( 2 + 𝐾 ) |
| 29 |
28
|
oveq1i |
⊢ ( 𝑁 + 1 ) = ( ( 2 + 𝐾 ) + 1 ) |
| 30 |
|
2cn |
⊢ 2 ∈ ℂ |
| 31 |
30 18 19
|
addassi |
⊢ ( ( 2 + 𝐾 ) + 1 ) = ( 2 + ( 𝐾 + 1 ) ) |
| 32 |
29 31
|
eqtri |
⊢ ( 𝑁 + 1 ) = ( 2 + ( 𝐾 + 1 ) ) |
| 33 |
16 32
|
breqtrri |
⊢ 2 ∥ ( 𝑁 + 1 ) |
| 34 |
|
elfzuz2 |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 35 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑁 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑁 ) ) ) |
| 37 |
36
|
ibi |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑁 ) ) |
| 38 |
|
elfzuz2 |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 |
|
fzm1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑀 ) ↔ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑀 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑀 ) ↔ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑀 ) ) ) |
| 41 |
40
|
ibi |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑀 ) ) |
| 42 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 43 |
8 42
|
ax-mp |
⊢ 𝑀 ∈ ℂ |
| 44 |
43 19 3
|
mvrraddi |
⊢ ( 𝑁 − 1 ) = 𝑀 |
| 45 |
44
|
oveq2i |
⊢ ( 0 ... ( 𝑁 − 1 ) ) = ( 0 ... 𝑀 ) |
| 46 |
41 45
|
eleq2s |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑀 ) ) |
| 47 |
18 19 2
|
mvrraddi |
⊢ ( 𝑀 − 1 ) = 𝐾 |
| 48 |
47
|
oveq2i |
⊢ ( 0 ... ( 𝑀 − 1 ) ) = ( 0 ... 𝐾 ) |
| 49 |
48
|
eleq2i |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ↔ ( 𝐴 mod 8 ) ∈ ( 0 ... 𝐾 ) ) |
| 50 |
1
|
simp3i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝐾 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 51 |
49 50
|
biimtrid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 52 |
|
2nn |
⊢ 2 ∈ ℕ |
| 53 |
|
8nn |
⊢ 8 ∈ ℕ |
| 54 |
|
4z |
⊢ 4 ∈ ℤ |
| 55 |
|
dvdsmul2 |
⊢ ( ( 4 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∥ ( 4 · 2 ) ) |
| 56 |
54 13 55
|
mp2an |
⊢ 2 ∥ ( 4 · 2 ) |
| 57 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
| 58 |
56 57
|
breqtri |
⊢ 2 ∥ 8 |
| 59 |
|
dvdsmod |
⊢ ( ( ( 2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ ) ∧ 2 ∥ 8 ) → ( 2 ∥ ( 𝐴 mod 8 ) ↔ 2 ∥ 𝐴 ) ) |
| 60 |
58 59
|
mpan2 |
⊢ ( ( 2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ ( 𝐴 mod 8 ) ↔ 2 ∥ 𝐴 ) ) |
| 61 |
52 53 60
|
mp3an12 |
⊢ ( 𝐴 ∈ ℤ → ( 2 ∥ ( 𝐴 mod 8 ) ↔ 2 ∥ 𝐴 ) ) |
| 62 |
61
|
notbid |
⊢ ( 𝐴 ∈ ℤ → ( ¬ 2 ∥ ( 𝐴 mod 8 ) ↔ ¬ 2 ∥ 𝐴 ) ) |
| 63 |
62
|
biimpar |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ¬ 2 ∥ ( 𝐴 mod 8 ) ) |
| 64 |
12 2
|
breqtrri |
⊢ 2 ∥ 𝑀 |
| 65 |
|
id |
⊢ ( ( 𝐴 mod 8 ) = 𝑀 → ( 𝐴 mod 8 ) = 𝑀 ) |
| 66 |
64 65
|
breqtrrid |
⊢ ( ( 𝐴 mod 8 ) = 𝑀 → 2 ∥ ( 𝐴 mod 8 ) ) |
| 67 |
63 66
|
nsyl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ¬ ( 𝐴 mod 8 ) = 𝑀 ) |
| 68 |
67
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) = 𝑀 → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 69 |
51 68
|
jaod |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑀 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 70 |
46 69
|
syl5 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 71 |
|
eleq1 |
⊢ ( ( 𝐴 mod 8 ) = 𝑁 → ( ( 𝐴 mod 8 ) ∈ 𝑆 ↔ 𝑁 ∈ 𝑆 ) ) |
| 72 |
4 71
|
mpbiri |
⊢ ( ( 𝐴 mod 8 ) = 𝑁 → ( 𝐴 mod 8 ) ∈ 𝑆 ) |
| 73 |
72
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) = 𝑁 → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 74 |
70 73
|
jaod |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( ( 𝐴 mod 8 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ∨ ( 𝐴 mod 8 ) = 𝑁 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 75 |
37 74
|
syl5 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) |
| 76 |
11 33 75
|
3pm3.2i |
⊢ ( 𝑁 ∈ ℤ ∧ 2 ∥ ( 𝑁 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 𝑁 ) → ( 𝐴 mod 8 ) ∈ 𝑆 ) ) ) |