Metamath Proof Explorer


Theorem 2llnm2N

Description: The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2llnm2.l ˙=K
2llnm2.m ˙=meetK
2llnm2.a A=AtomsK
2llnm2.n N=LLinesK
2llnm2.p P=LPlanesK
Assertion 2llnm2N KHLXNYNWPX˙WY˙WXYX˙YA

Proof

Step Hyp Ref Expression
1 2llnm2.l ˙=K
2 2llnm2.m ˙=meetK
3 2llnm2.a A=AtomsK
4 2llnm2.n N=LLinesK
5 2llnm2.p P=LPlanesK
6 simp22 KHLXNYNWPX˙WY˙WXYYN
7 simp1 KHLXNYNWPX˙WY˙WXYKHL
8 hllat KHLKLat
9 8 3ad2ant1 KHLXNYNWPX˙WY˙WXYKLat
10 simp21 KHLXNYNWPX˙WY˙WXYXN
11 eqid BaseK=BaseK
12 11 4 llnbase XNXBaseK
13 10 12 syl KHLXNYNWPX˙WY˙WXYXBaseK
14 11 4 llnbase YNYBaseK
15 6 14 syl KHLXNYNWPX˙WY˙WXYYBaseK
16 11 2 latmcl KLatXBaseKYBaseKX˙YBaseK
17 9 13 15 16 syl3anc KHLXNYNWPX˙WY˙WXYX˙YBaseK
18 eqid joinK=joinK
19 1 18 4 5 2llnjN KHLXNYNWPX˙WY˙WXYXjoinKY=W
20 simp23 KHLXNYNWPX˙WY˙WXYWP
21 19 20 eqeltrd KHLXNYNWPX˙WY˙WXYXjoinKYP
22 11 1 18 latlej1 KLatXBaseKYBaseKX˙XjoinKY
23 9 13 15 22 syl3anc KHLXNYNWPX˙WY˙WXYX˙XjoinKY
24 eqid K=K
25 1 24 4 5 llncvrlpln2 KHLXNXjoinKYPX˙XjoinKYXKXjoinKY
26 7 10 21 23 25 syl31anc KHLXNYNWPX˙WY˙WXYXKXjoinKY
27 11 18 2 24 cvrexch KHLXBaseKYBaseKX˙YKYXKXjoinKY
28 7 13 15 27 syl3anc KHLXNYNWPX˙WY˙WXYX˙YKYXKXjoinKY
29 26 28 mpbird KHLXNYNWPX˙WY˙WXYX˙YKY
30 11 24 3 4 atcvrlln KHLX˙YBaseKYBaseKX˙YKYX˙YAYN
31 7 17 15 29 30 syl31anc KHLXNYNWPX˙WY˙WXYX˙YAYN
32 6 31 mpbird KHLXNYNWPX˙WY˙WXYX˙YA