Metamath Proof Explorer


Theorem 2ltceilhalf

Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025)

Ref Expression
Assertion 2ltceilhalf N 3 2 N 2

Proof

Step Hyp Ref Expression
1 uzp1 N 3 N = 3 N 3 + 1
2 ex-ceil 3 2 = 2 3 2 = 1
3 2re 2
4 3 leidi 2 2
5 breq2 3 2 = 2 2 3 2 2 2
6 4 5 mpbiri 3 2 = 2 2 3 2
7 6 adantr 3 2 = 2 3 2 = 1 2 3 2
8 2 7 ax-mp 2 3 2
9 fvoveq1 N = 3 N 2 = 3 2
10 8 9 breqtrrid N = 3 2 N 2
11 3 a1i N 4 2
12 eluzelre N 4 N
13 12 rehalfcld N 4 N 2
14 13 ceilcld N 4 N 2
15 14 zred N 4 N 2
16 2t2e4 2 2 = 4
17 eluzle N 4 4 N
18 16 17 eqbrtrid N 4 2 2 N
19 2pos 0 < 2
20 3 19 pm3.2i 2 0 < 2
21 20 a1i N 4 2 0 < 2
22 lemuldiv 2 N 2 0 < 2 2 2 N 2 N 2
23 3 12 21 22 mp3an2i N 4 2 2 N 2 N 2
24 18 23 mpbid N 4 2 N 2
25 13 ceilged N 4 N 2 N 2
26 11 13 15 24 25 letrd N 4 2 N 2
27 3p1e4 3 + 1 = 4
28 27 fveq2i 3 + 1 = 4
29 26 28 eleq2s N 3 + 1 2 N 2
30 10 29 jaoi N = 3 N 3 + 1 2 N 2
31 1 30 syl N 3 2 N 2