Metamath Proof Explorer


Theorem 2ndf1

Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T = C × c D
1stfval.b B = Base T
1stfval.h H = Hom T
1stfval.c φ C Cat
1stfval.d φ D Cat
2ndfval.p Q = C 2 nd F D
2ndf1.p φ R B
Assertion 2ndf1 φ 1 st Q R = 2 nd R

Proof

Step Hyp Ref Expression
1 1stfval.t T = C × c D
2 1stfval.b B = Base T
3 1stfval.h H = Hom T
4 1stfval.c φ C Cat
5 1stfval.d φ D Cat
6 2ndfval.p Q = C 2 nd F D
7 2ndf1.p φ R B
8 1 2 3 4 5 6 2ndfval φ Q = 2 nd B x B , y B 2 nd x H y
9 fo2nd 2 nd : V onto V
10 fofun 2 nd : V onto V Fun 2 nd
11 9 10 ax-mp Fun 2 nd
12 2 fvexi B V
13 resfunexg Fun 2 nd B V 2 nd B V
14 11 12 13 mp2an 2 nd B V
15 12 12 mpoex x B , y B 2 nd x H y V
16 14 15 op1std Q = 2 nd B x B , y B 2 nd x H y 1 st Q = 2 nd B
17 8 16 syl φ 1 st Q = 2 nd B
18 17 fveq1d φ 1 st Q R = 2 nd B R
19 7 fvresd φ 2 nd B R = 2 nd R
20 18 19 eqtrd φ 1 st Q R = 2 nd R