Metamath Proof Explorer


Theorem 2ndf1

Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T=C×cD
1stfval.b B=BaseT
1stfval.h H=HomT
1stfval.c φCCat
1stfval.d φDCat
2ndfval.p Q=C2ndFD
2ndf1.p φRB
Assertion 2ndf1 φ1stQR=2ndR

Proof

Step Hyp Ref Expression
1 1stfval.t T=C×cD
2 1stfval.b B=BaseT
3 1stfval.h H=HomT
4 1stfval.c φCCat
5 1stfval.d φDCat
6 2ndfval.p Q=C2ndFD
7 2ndf1.p φRB
8 1 2 3 4 5 6 2ndfval φQ=2ndBxB,yB2ndxHy
9 fo2nd 2nd:VontoV
10 fofun 2nd:VontoVFun2nd
11 9 10 ax-mp Fun2nd
12 2 fvexi BV
13 resfunexg Fun2ndBV2ndBV
14 11 12 13 mp2an 2ndBV
15 12 12 mpoex xB,yB2ndxHyV
16 14 15 op1std Q=2ndBxB,yB2ndxHy1stQ=2ndB
17 8 16 syl φ1stQ=2ndB
18 17 fveq1d φ1stQR=2ndBR
19 7 fvresd φ2ndBR=2ndR
20 18 19 eqtrd φ1stQR=2ndR