Metamath Proof Explorer


Theorem 2ndresdjuf1o

Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Hypotheses 2ndresdju.u U=xXx×C
2ndresdju.a φAV
2ndresdju.x φXW
2ndresdju.1 φDisjxXC
2ndresdju.2 φxXC=A
Assertion 2ndresdjuf1o φ2ndU:U1-1 ontoA

Proof

Step Hyp Ref Expression
1 2ndresdju.u U=xXx×C
2 2ndresdju.a φAV
3 2ndresdju.x φXW
4 2ndresdju.1 φDisjxXC
5 2ndresdju.2 φxXC=A
6 1 2 3 4 5 2ndresdju φ2ndU:U1-1A
7 1 iunfo 2ndU:UontoxXC
8 foeq3 xXC=A2ndU:UontoxXC2ndU:UontoA
9 8 biimpa xXC=A2ndU:UontoxXC2ndU:UontoA
10 5 7 9 sylancl φ2ndU:UontoA
11 df-f1o 2ndU:U1-1 ontoA2ndU:U1-1A2ndU:UontoA
12 6 10 11 sylanbrc φ2ndU:U1-1 ontoA