Metamath Proof Explorer


Theorem 2oconcl

Description: Closure of the pair swapping function on 2o . (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion 2oconcl A2𝑜1𝑜A2𝑜

Proof

Step Hyp Ref Expression
1 elpri A1𝑜A=A=1𝑜
2 difeq2 A=1𝑜A=1𝑜
3 dif0 1𝑜=1𝑜
4 2 3 eqtrdi A=1𝑜A=1𝑜
5 difeq2 A=1𝑜1𝑜A=1𝑜1𝑜
6 difid 1𝑜1𝑜=
7 5 6 eqtrdi A=1𝑜1𝑜A=
8 4 7 orim12i A=A=1𝑜1𝑜A=1𝑜1𝑜A=
9 8 orcomd A=A=1𝑜1𝑜A=1𝑜A=1𝑜
10 1 9 syl A1𝑜1𝑜A=1𝑜A=1𝑜
11 1on 1𝑜On
12 difexg 1𝑜On1𝑜AV
13 11 12 ax-mp 1𝑜AV
14 13 elpr 1𝑜A1𝑜1𝑜A=1𝑜A=1𝑜
15 10 14 sylibr A1𝑜1𝑜A1𝑜
16 df2o3 2𝑜=1𝑜
17 15 16 eleqtrrdi A1𝑜1𝑜A2𝑜
18 17 16 eleq2s A2𝑜1𝑜A2𝑜