Metamath Proof Explorer


Theorem 2pthfrgrrn

Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypotheses 2pthfrgrrn.v V=VtxG
2pthfrgrrn.e E=EdgG
Assertion 2pthfrgrrn GFriendGraphaVcVabVabEbcE

Proof

Step Hyp Ref Expression
1 2pthfrgrrn.v V=VtxG
2 2pthfrgrrn.e E=EdgG
3 1 2 isfrgr GFriendGraphGUSGraphaVcVa∃!bVbabcE
4 reurex ∃!bVbabcEbVbabcE
5 prcom ab=ba
6 5 eleq1i abEbaE
7 6 anbi1i abEbcEbaEbcE
8 zfpair2 baV
9 zfpair2 bcV
10 8 9 prss baEbcEbabcE
11 7 10 sylbbr babcEabEbcE
12 11 reximi bVbabcEbVabEbcE
13 4 12 syl ∃!bVbabcEbVabEbcE
14 13 a1i GUSGraphaVcVa∃!bVbabcEbVabEbcE
15 14 ralimdvva GUSGraphaVcVa∃!bVbabcEaVcVabVabEbcE
16 15 imp GUSGraphaVcVa∃!bVbabcEaVcVabVabEbcE
17 3 16 sylbi GFriendGraphaVcVabVabEbcE