Metamath Proof Explorer


Theorem 2pthfrgrrn2

Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypotheses 2pthfrgrrn.v V=VtxG
2pthfrgrrn.e E=EdgG
Assertion 2pthfrgrrn2 GFriendGraphaVcVabVabEbcEabbc

Proof

Step Hyp Ref Expression
1 2pthfrgrrn.v V=VtxG
2 2pthfrgrrn.e E=EdgG
3 1 2 2pthfrgrrn GFriendGraphaVcVabVabEbcE
4 frgrusgr GFriendGraphGUSGraph
5 2 usgredgne GUSGraphabEab
6 5 ex GUSGraphabEab
7 2 usgredgne GUSGraphbcEbc
8 7 ex GUSGraphbcEbc
9 6 8 anim12d GUSGraphabEbcEabbc
10 4 9 syl GFriendGraphabEbcEabbc
11 10 ad2antrr GFriendGraphaVcVabVabEbcEabbc
12 11 ancld GFriendGraphaVcVabVabEbcEabEbcEabbc
13 12 reximdva GFriendGraphaVcVabVabEbcEbVabEbcEabbc
14 13 ralimdvva GFriendGraphaVcVabVabEbcEaVcVabVabEbcEabbc
15 3 14 mpd GFriendGraphaVcVabVabEbcEabbc