Metamath Proof Explorer


Theorem 2ralunsn

Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Hypotheses 2ralunsn.1 x=Bφχ
2ralunsn.2 y=Bφψ
2ralunsn.3 x=Bψθ
Assertion 2ralunsn BCxAByABφxAyAφxAψyAχθ

Proof

Step Hyp Ref Expression
1 2ralunsn.1 x=Bφχ
2 2ralunsn.2 y=Bφψ
3 2ralunsn.3 x=Bψθ
4 2 ralunsn BCyABφyAφψ
5 4 ralbidv BCxAByABφxAByAφψ
6 1 ralbidv x=ByAφyAχ
7 6 3 anbi12d x=ByAφψyAχθ
8 7 ralunsn BCxAByAφψxAyAφψyAχθ
9 r19.26 xAyAφψxAyAφxAψ
10 9 anbi1i xAyAφψyAχθxAyAφxAψyAχθ
11 8 10 bitrdi BCxAByAφψxAyAφxAψyAχθ
12 5 11 bitrd BCxAByABφxAyAφxAψyAχθ