Metamath Proof Explorer


Theorem 2sbcrex

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion 2sbcrex [˙A/a]˙[˙B/b]˙cCφcC[˙A/a]˙[˙B/b]˙φ

Proof

Step Hyp Ref Expression
1 sbcrex [˙B/b]˙cCφcC[˙B/b]˙φ
2 1 sbcbii [˙A/a]˙[˙B/b]˙cCφ[˙A/a]˙cC[˙B/b]˙φ
3 sbcrex [˙A/a]˙cC[˙B/b]˙φcC[˙A/a]˙[˙B/b]˙φ
4 2 3 bitri [˙A/a]˙[˙B/b]˙cCφcC[˙A/a]˙[˙B/b]˙φ