Description: Lemma 3 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqreulem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | |
|
2 | 1 | eqcoms | |
3 | 2 | adantl | |
4 | eqcom | |
|
5 | 2sqreulem2 | |
|
6 | 4 5 | biimtrid | |
7 | 6 | adantr | |
8 | 3 7 | sylbid | |
9 | 8 | adantld | |
10 | 9 | ex | |
11 | 10 | adantld | |
12 | 11 | impd | |
13 | 12 | 3expb | |