Metamath Proof Explorer


Theorem 2sqreulem3

Description: Lemma 3 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)

Ref Expression
Assertion 2sqreulem3 A0B0C0φA2+B2=PψA2+C2=PB=C

Proof

Step Hyp Ref Expression
1 eqeq2 P=A2+B2A2+C2=PA2+C2=A2+B2
2 1 eqcoms A2+B2=PA2+C2=PA2+C2=A2+B2
3 2 adantl A0B0C0A2+B2=PA2+C2=PA2+C2=A2+B2
4 eqcom A2+C2=A2+B2A2+B2=A2+C2
5 2sqreulem2 A0B0C0A2+B2=A2+C2B=C
6 4 5 biimtrid A0B0C0A2+C2=A2+B2B=C
7 6 adantr A0B0C0A2+B2=PA2+C2=A2+B2B=C
8 3 7 sylbid A0B0C0A2+B2=PA2+C2=PB=C
9 8 adantld A0B0C0A2+B2=PψA2+C2=PB=C
10 9 ex A0B0C0A2+B2=PψA2+C2=PB=C
11 10 adantld A0B0C0φA2+B2=PψA2+C2=PB=C
12 11 impd A0B0C0φA2+B2=PψA2+C2=PB=C
13 12 3expb A0B0C0φA2+B2=PψA2+C2=PB=C